

PROGETTO ESECUTIVO

ELABORATO

DESCRIZIONE ELABORATO

ER03

Capitolato speciale d'appalto - Parte tecnica -

DATA

Novembre 2023

COMMITTENTE:

PISAMO S.R.L.

P.IVA:01707050504

RESPONSABILE UNICO DEL PROCEDIMENTO

Ing. Alessandro Fiorindi

Tel. 050.502742

PEC:pisamo@pec.devitalia.it

PROGETTISTA:

			IDENTIFICATIVO	22009_	0 3 R _ E _	T A M _ 0 1
REV	DATA	MOTIVAZIONE	REDATTO	VERIFICATO	APPROVATO	AUTORIZZATO
00	15/02/2022	Prima emissione	Ing. G. Benedetti	Ing. F. Bernardini	Ing. A. Dami	Ing. M. Pierami
01	06/09/2022	Seconda emissione	Ing. G. Benedetti	Ing. F. Bernardini	Ing. A. Dami	Ing. M. Pierami
02	24/11/2023	Terza emissione	Ing. G. Benedetti	Ing. F. Bernardini	Ing. A. Dami	Ing. M. Pierami

CAPITOLO 1

QUALITA' E PROVENIENZA DEI MATERIALI MODALITA' DI ESECUZIONE DI OGNI CATEGORIA DI LAVORO ORDINE DA TENERSI NELL'ANDAMENTO DEI LAVORI

Art. 1.1 QUALITA' E PROVENIENZA DEI MATERIALI

I materiali occorrenti per la costruzione delle opere d'arte proverranno da quelle località che l'Appaltatore riterrà di sua convenienza, purché ad insindacabile giudizio della Direzione dei Lavori siano riconosciuti della migliore qualità della specie e rispondano ai requisiti appresso indicati.

L'appalto non prevede categorie di prodotti ottenibili con materiale riciclato, tra quelle elencate nell'apposito decreto ministeriale emanato ai sensi dell'art. 2, comma 1 lettera d) del D.M. dell'ambiente n. 203/2003.

Quando la Direzione dei Lavori avrà rifiutato qualche provvista perché ritenuta a suo giudizio insindacabile non idonea ai lavori, l'Appaltatore dovrà sostituirla con altra che risponda ai requisiti voluti ed i materiali rifiutati dovranno essere immediatamente allontanati dalla sede del lavoro o dai cantieri a cura e spese dell'Appaltatore.

- **a) Acqua**. L'acqua per l'impasto con leganti idraulici dovrà essere limpida, priva di sostanze organiche o grassi e priva di sali (particolarmente solfati e cloruri) in percentuali dannose e non essere aggressiva per il conglomerato risultante. Avrà un pH compreso fra 6 ed 8.
- b) Calce. Le calci aeree ed idrauliche dovranno rispondere ai requisiti di accettazione di cui alle norme vigenti. La calce grassa in zolle dovrà provenire da calcari puri, essere di recente e perfetta cottura, di colore uniforme, non bruciata, né vitrea, né pigra ad idratarsi ed infine di qualità tale che, mescolata con la sola quantità d'acqua dolce necessaria all'estinzione, si trasformi completamente in una pasta soda a grassetto tenuissimo, senza lasciare residui maggiori del 5% dovuti a parti non bene decarburate, siliciose od altrimenti inerti.
 - La calce viva, al momento dell'estinzione, dovrà essere perfettamente anidra; sarà rifiutata quella ridotta in polvere o sfiorita, e perciò si dovrà provvedere la calce viva a misura del bisogno e conservarla comunque in luoghi asciutti e ben riparati dall'umidità.
 - L'estinzione della calce viva dovrà farsi con i migliori sistemi conosciuti ed, a seconda delle prescrizioni della Direzione dei Lavori, in apposite vasche impermeabili rivestite di tavole o di muratura. La calce grassa destinata agli intonaci dovrà essere spenta almeno sei mesi prima dell'impiego.
- c) Leganti idraulici. Le calci idrauliche, i cementi e gli agglomeranti cementizi a rapida o lenta presa da impiegare per qualsiasi lavoro, dovranno corrispondere a tutte le particolari prescrizioni di accettazione di cui alle norme vigenti.
 - Essi dovranno essere conservati in magazzini coperti su tavolati in legno ben riparati dall'umidità o in sili.
- **d) Pozzolana.** La pozzolana sarà ricavata da strati mondi da cappellaccio ed esente da sostanze eterogenee o da parti inerti; qualunque sia la sua provenienza dovrà rispondere a tutti i requisiti prescritti dalle norme vigenti.
 - Per la misurazione, sia a peso che a volume, dovrà essere perfettamente asciutta.
- e) Ghiaia, pietrisco e sabbia. Le ghiaie, i pietrischi e le sabbie da impiegare nella formazione dei calcestruzzi dovranno corrispondere alle condizioni di accettazione considerate nelle norme di esecuzione delle opere in conglomerato semplice od armato di cui alle norme vigenti.

Le ghiaie ed i pietrischi dovranno essere costituiti da elementi omogenei derivati da rocce resistenti, il più possibile omogenee e non gelive; tra le ghiaie si escluderanno quelle contenenti elementi di scarsa resistenza meccanica, facilmente sfaldabili o rivestite da incrostazioni o gelive.

La sabbia da impiegarsi nelle murature o nei calcestruzzi dovrà essere assolutamente scevra di materie terrose ed organiche e ben lavata. Dovrà essere preferibilmente di qualità silicea proveniente da rocce aventi alta resistenza alla compressione. Dovrà avere forma angolosa ed avere elementi di grossezza variabile da 1 a 5 mm.

La granulometria degli aggregati litici per i conglomerati sarà prescritta dalla Direzione dei Lavori in base alla destinazione, al dosaggio ed alle condizioni della messa in opera dei calcestruzzi. L'Appaltatore dovrà garantire la costanza delle caratteristiche della granulometria per ogni lavoro.

Per i lavori di notevole importanza I'Appaltatore dovrà disporre della serie dei vagli normali atti a consentire alla Direzione dei Lavori i normali controlli.

In linea di massima, per quanto riguarda la dimensione degli elementi dei pietrischi e delle ghiaie questi dovranno essere da 40 a 71 mm per lavori correnti di fondazioni, elevazione, muri di sostegno da 40 a 60 mm se si tratta di volti o getti di un certo spessore da 25 a 40 mm se si tratta di volti o getti di limitato spessore. Le ghiaie da impiegarsi per formazione di massicciate stradali dovranno essere costituite da elementi omogenei derivati da rocce durissime di tipo costante e di natura consimile fra loro, escludendosi quelle contenenti elementi di scarsa resistenza meccanica o sfaldabili facilmente o gelive o rivestite di incrostazioni.

Il pietrisco, il pietrischetto e la graniglia, secondo il tipo di massicciata da eseguire, dovranno provenire dalla spezzatura di rocce durissime, preferibilmente silicee, a struttura microcristallina, o calcari puri durissimi e di alta resistenza alla compressione, all'urto, all'abrasione, al gelo ed avranno spigolo vivo: e dovranno essere scevri di materie terrose, sabbia o comunque materie eterogenee.

Qualora la roccia provenga da cave nuove o non accreditate da esperienze specifiche di enti pubblici e che per natura e formazione non diano affidamento sulle sue caratteristiche, è necessario effettuare su campioni prelevati in cava, che siano significativi ai fini della coltivazione della cava, prove di compressione e di gelività. Quando non sia possibile ottenere il pietrisco da cave di roccia, potrà essere consentita per la formazione di esso l'utilizzazione di massi sparsi in campagna o ricavabili da scavi, nonché di ciottoloni o massi ricavabili da fiumi o torrenti sempreché siano provenienti da rocce di qualità idonea.

I materiali suindicati, le sabbie e gli additivi dovranno corrispondere alle norme di accettazione emanate dal Consiglio Nazionale delle Ricerche. Le graniglie saranno quelle indicate nelle norme di buona tecnica per la tipologia edilizia in oggetto.

Di norma si useranno le sequenti pezzature:

- 1) pietrisco da 40 a 71 mm ovvero da 40 a 60 mm, se ordinato, per la costruzione di massicciate all'acqua cilindrate;
- 2) pietrisco da 25 a 40 mm (eccezionalmente da 15 a 30 mm granulometria non unificata) per l'esecuzione di ricarichi di massicciate e per materiali di costipamento di massicciate (mezzanello);
- 3) pietrischetto da 15 a 25 mm per l'esecuzione di ricarichi di massicciate per conglomerati bituminosi e per trattamenti con bitumi fluidi;
- 4) pietrischetto da 10 a 15 mm per trattamenti superficiali, penetrazioni, semipenetrazioni e pietrischetti bitumati;
- 5) graniglia normale da 5 a 20 mm per trattamenti superficiali, tappeti bitumati, strato superiore di conglomerati bituminosi;
- 6) graniglia minuta da 2 a 5 mm di impiego eccezionale e previo specifico consenso della Direzione dei Lavori per trattamenti superficiali; tale pezzatura di graniglia, ove richiesta, sarà invece usata per conglomerati bituminosi.

Nella fornitura di aggregato grosso per ogni pezzatura sarà ammessa una percentuale in peso non superiore al 5% di elementi aventi dimensioni maggiori o minori di quelle corrispondenti ai limiti di prescelta pezzatura, purché, per altro, le dimensioni di tali elementi non superino il limite massimo o non siano oltre il 10% inferiori al limite minimo della pezzatura fissata.

Gli aggregati grossi non dovranno essere di forma allungata o appiattita (lamellare).

f) Terreni per soprastrutture in materiali stabilizzati. - Essi debbono identificarsi mediante la loro granulometria e i limiti di Atterberg, che determinano la percentuale di acqua in corrispondenza della quale il comportamento della frazione fina del terreno (passante al setaccio 0,42 mm n. 40 A.S.T.M.) passa da una fase solida ad una plastica (limite di plasticità L.P.) e da una fase plastica ad una fase liquida (limite di fluidità L.L.) nonché dall'indice di plasticità (differenze fra il limite di fluidità L.L. e il limite di plasticità L.P.).

Tale indice, da stabilirsi in genere per raffronto con casi similari di strade già costruite con analoghi terreni, ha notevole importanza.

Salvo più specifiche prescrizioni della Direzione dei Lavori si potrà fare riferimento alle seguenti caratteristiche (Highway Research Board):

- 1) strati inferiori (fondazione): tipo miscela sabbia-argilla: dovrà interamente passare al setaccio 25 mm ed essere almeno passante per il 65% al setaccio n. 10 A.S.T.M.; il detto passante al n. 10, dovrà essere passante dal 55 al 90% al n. 20 A.S.T.M., dal 35 al 70% passante al n. 40 A.S.T.M. e dal 10 al 25% passante al n. 200 A.S.T.M.;
- 2) strati inferiori (fondazione): tipo di miscela ghiaia o pietrisco, sabbia ed argilla: dovrà essere interamente passante al setaccio da 71 mm ed essere almeno passante per il 50 % al setaccio da 10 mm, dal 25 al 50% al setaccio n. 4, dal 20 al 40% al setaccio n. 10, dal 10 al 25% al setaccio n. 40 e dal 3 al 10% al setaccio n. 200.
- 3) negli strati di fondazione, di cui ai precedenti paragrafi 1) e 2), l'indice di plasticità non deve essere superiore a 6, il limite di fluidità non deve superare 25 e la frazione passante al setaccio n. 200 A.S.T.M. deve essere preferibilmente la metà di quella passante al setaccio n. 40 e in ogni caso non deve superare i due terzi di essa.
- 4) strato superiore della sovrastruttura: tipo miscela sabbia-argilla: valgono le stesse condizioni granulometriche di cui al paragrafo 1);
- 5) strato superiore della sovrastruttura: tipo della miscela ghiaia o pietrisco, sabbia ed argilla: deve essere interamente passante dal setaccio da 25 mm ed almeno il 65% al setaccio da 10 mm, dal 55 all'85% al setaccio n. 4, dal 40 al 70% al setaccio n. 10, dal 25 al 45% al setaccio n. 40 e dal 10 al 25% al setaccio n. 200;
- 6) negli strati superiori 4) e 5) l'indice di plasticità non deve essere superiore a 9 né inferiore a 4; il limite di fluidità non deve superare 35; la frazione di passante al setaccio n. 200 deve essere inferiore ai due terzi della frazione passante al n. 40.

Inoltre è opportuno controllare le caratteristiche meccaniche delle miscele con la prova C.B.R. (Californian bearing ratio) che esprime la portanza della miscela sotto un pistone cilindrico di due pollici di diametro, con approfondimento di 2,5 ovvero 5 mm in rapporto alla corrispondente portanza di una miscela tipo. In linea di massima il C.B.R. del materiale, costipato alla densità massima e saturato con acqua dopo 4 giorni di immersione e sottoposto ad un sovraccarico di 9 kg, dovrà risultare per gli strati inferiori non inferiore a 30 e per i materiali degli strati superiori non inferiore a 70. Durante l'immersione in acqua non si dovranno avere rigonfiamenti superiori allo 0,5%.

g) Detrito di cava o tout-venant di cava o di frantoio. - Quando per gli strati di fondazione della sovrastruttura stradale sia disposto l'impiego di detriti di cava, il materiale deve essere in ogni caso non suscettibile all'azione dell'acqua (non solubile non plasticizzabile) ed avere un potere portante C.B.R. (rapporto portante californiano) di almeno 40 allo stato saturo. Dal punto di vista granulometrico non sono necessarie prescrizioni specifiche per i materiali teneri (tufi, arenarie) in quanto la loro granulometria si modifica e si adegua durante la cilindratura; per materiali duri la granulometria dovrà essere assortita in modo da realizzare una minima percentuale dei vuoti: di norma la dimensione massima degli aggregati non deve superare i 10 cm.

Per gli strati superiori si farà uso di materiali lapidei più duri tali da assicurare un C.B.R. saturo di almeno 80; la granulometria dovrà essere tale da dare la minima percentuale di vuoti; il potere legante del materiale non dovrà essere inferiore a 30; la dimensione massima degli aggregati non dovrà superare i 6 cm.

- h) Pietrame. Le pietre naturali da impiegarsi nella muratura e per qualsiasi altro lavoro dovranno corrispondere ai requisiti richiesti dalle norme in vigore e dovranno essere a grana compatta ed ognuna monda da cappellaccio, esenti da piani di sfaldamento, senza screpolature, peli, venature, interclusioni di sostanze estranee; dovranno avere dimensioni adatte al particolare loro impiego ed offrire una resistenza proporzionata all'entità della sollecitazione cui devono essere assoggettate.
 - Saranno escluse le pietre alterabili all'azione degli agenti atmosferici e dell'acqua corrente.
 - Le pietre da taglio, oltre a possedere gli accennati requisiti e caratteri generali, dovranno essere sonore alla percussione, immuni da fenditure e litoclasi e di perfetta lavorabilità.
 - Il profilo dovrà presentare una resistenza alla compressione non inferiore a 1600 kg/cm² ed una resistenza all'attrito radente (Dorry) non inferiore a quella del granito di S. Fedelino, preso come termine di paragone.
- i) **Tufi**. Le pietre di tufo dovranno essere di struttura compatta ed uniforme, evitando quelle pomiciose e facilmente friabili, nonché i cappellacci e saranno impiegati solo in relazione alla loro resistenza.
- **I) Cubetti di pietra**. I cubetti di pietra da impiegare per la pavimentazione stradale debbono rispondere alle norme di accettazione emanate dal Consiglio Nazionale delle Ricerche.
- m)Mattoni. I mattoni dovranno essere ben formati con facce regolari, a spigoli vivi, di grana fina, compatta ed omogenea; presentare tutti i caratteri di una perfetta cottura, cioè essere duri, sonori alla percussione e non vetrificati; essere esenti da calcinelli e scevri da ogni difetto che possa nuocere alla buona riuscita delle murature; aderire fortemente alle malte; essere resistenti alla cristallizzazione dei solfati alcalini; non contenere solfati solubili od ossidi alcalino-terrosi, ed infine non essere eccessivamente assorbenti.
 - I mattoni, inoltre, debbono resistere all'azione delle basse temperature, cioè se sottoposti quattro mattoni segati a metà, a venti cicli di immersione in acqua a 35 °C, per la durata di 3 ore e per altre 3 ore posti in frigorifero alla temperatura di 10°, i quattro provini fatti con detti laterizi sottoposti alla prova di compressione debbono offrire una resistenza non minore dell'80% della resistenza presentata da quelli provati allo stato asciutto.
 - I mattoni di uso corrente dovranno essere parallelepipedi, di lunghezza doppia della larghezza, di modello costante e presentare, sia all'asciutto che dopo prolungata immersione nell'acqua, una resistenza minima allo schiacciamento di almeno 160 Kg/cm².
 - Essi dovranno corrispondere alle prescrizioni vigenti in materia.
- n) Materiali ferrosi. I materiali ferrosi da impiegare nei lavori dovranno essere esenti da scorie, soffiature, brecciature, paglie o da qualsiasi altro difetto apparente o latente di fusione, laminazione, trafilatura, fucinatura e simili.
 - Essi dovranno rispondere a tutte le condizioni previste dalle vigenti disposizioni legislative, dal D.M. 17 gennaio 2018, nonché dalle norme UNI vigenti e presentare inoltre, a seconda della loro qualità, i seguenti requisiti:
 - 1º Ferro. Il ferro comune dovrà essere di prima qualità, eminentemente duttile e tenace e di marcatissima struttura fibrosa. Esso dovrà essere malleabile, liscio alla superficie esterna, privo di screpolature, senza saldature aperte e senza altre soluzioni di continuità.
 - 2º Acciaio dolce laminato. L'acciaio extradolce laminato (comunemente chiamato ferro omogeneo) dovrà essere eminentemente dolce e malleabile, perfettamente lavorabile a freddo ed a caldo, senza presentare screpolature od alterazioni; dovrà essere saldabile e non suscettibile di prendere la tempra.
 - Alla rottura dovrà presentare struttura finemente granulare ed aspetto sericeo.
 - 3º Acciaio fuso in getti. L'acciaio in getti per cuscinetti, cerniere, rulli di ponti e per qualsiasi altro lavoro, dovrà essere di prima qualità, esente da soffiature e da qualsiasi altro difetto.
 - 4º L'acciaio sagomato ad alta resistenza dovrà essere del tipo qualificato e controllato e con caratteristiche conformi al D.M. 17 gennaio 2018.
 - Le caratteristiche e le modalità degli acciai in barre saranno quelle indicate nel D.M. 17 gennaio 2018.
 - 5° Ghisa. La ghisa dovrà essere di prima qualità e di seconda fusione, dolce, tenace, leggermente malleabile, facilmente lavorabile con la lima e con lo scalpello; di frattura grigia, finemente granosa e perfettamente omogenea, esente da screpolature, vene, bolle, sbavature, asperità ed altri difetti capaci di menomarne la resistenza. Dovrà essere inoltre perfettamente modellata.

E' assolutamente escluso l'impiego di ghise fosforose.

o) Legname. - I legnami, da impiegare in opere stabili o provvisorie, di qualunque essenza essi siano, dovranno rispondere a tutte le prescrizioni della vigente normativa, saranno provveduti tra le più scelte qualità della categoria prescritta e non presenteranno difetti incompatibili con l'uso a cui sono destinati.

I requisiti e le prove dei legnami saranno quelli contenuti nelle vigenti norme UNI.

Il tavolame dovrà essere ricavato dalle travi più dritte, affinché le fibre non riescano mozze dalla sega e si ritirino nelle connessure. I legnami rotondi o pali dovranno provenire dal vero tronco dell'albero e non dai rami, dovranno essere sufficientemente dritti, in modo che la congiungente i centri delle due basi non debba uscire in alcun punto del palo; dovranno essere scortecciati per tutta la loro lunghezza e conguagliati alla superficie; la differenza fra i diametri medi delle estremità non dovrà oltrepassare i 15 millesimi della lunghezza, né il quarto del maggiore dei due diametri.

Nei legnami grossolanamente squadrati ed a spigolo smussato, tutte le facce dovranno essere spianate e senza scarniture, tollerandosene l'alburno o lo smusso in misura non maggiore di un sesto del lato della sezione trasversale.

I legnami a spigolo vivo dovranno essere lavorati e squadrati a sega con le diverse facce esattamente spianate, senza rientranze o risalti, e con gli spigoli tirati a filo vivo, senza alburno né smusso di sorta.

p) Geotessili. - I prodotti da utilizzarsi per costituire strati di separazione, contenimento, filtranti, drenaggio in opere di terra (rilevati, scarpate, strade, giardini, ecc.).

Il geotessile dovrà essere imputrescibile, resistente ai raggi ultravioletti, ai solventi, alle reazioni chimiche che si instaurano nel terreno, all'azione dei microrganismi ed essere antinquinante.

Dovrà essere fornito in opera in rotoli di larghezza la più ampia possibile in relazione al modo d'impiego. Il piano di stesa del geotessile dovrà essere perfettamente regolare.

Dovrà essere curata la giunzione dei teli mediante sovrapposizione di almeno 30 cm nei due sensi longitudinale e trasversale. I teli non dovranno essere in alcun modo esposti al diretto passaggio dei mezzi di cantiere prima della loro totale copertura con materiale da rilevato per uno spessore di almeno 30 cm.

Il geotessile dovrà essere conforme alle seguenti norme UNI EN 13249, UNI EN 13251, UNI EN 13252, UNI EN 13253, UNI EN 13254, UNI EN 13255, UNI EN 13256, UNI EN 13257, UNI EN 13265 ove applicabili.

Prove dei materiali

In correlazione a quanto prescritto circa la qualità e le caratteristiche dei materiali per la loro accettazione, l'Appaltatore sarà obbligato a prestarsi in ogni tempo alle prove dei materiali impiegati o da impiegarsi, nonché a quelle di campioni di lavori eseguiti, da prelevarsi in opera, sottostando a tutte le spese di prelevamento ed invio di campioni ad Istituto Sperimentale debitamente riconosciuto.

L'Appaltatore sarà tenuto a pagare le spese per dette prove, secondo le tariffe degli istituti stessi.

Dei campioni potrà essere ordinata la conservazione nel competente Ufficio Dirigente, munendoli di sigilli e firma della Direzione dei lavori e dell'Appaltatore, nei modi più adatti a garantire l'autenticità.

Art. 1.2 OCCUPAZIONE, APERTURA E SFRUTTAMENTO DELLE CAVE

Fermo restando quanto prescritto nel presente Capitolato circa la provenienza dei materiali, resta stabilito che tutte le pratiche e gli oneri inerenti alla ricerca, occupazione, apertura e gestione delle cave sono a carico esclusivo dell'Appaltatore, rimanendo la Stazione Appaltante sollevata dalle conseguenze di qualsiasi difficoltà che l'Appaltatore potesse incontrare a tale riguardo. Al momento della Consegna dei lavori, l'Appaltatore dovrà indicare le cave di cui

intende servirsi e garantire che queste siano adeguate e capaci di fornire in tempo utile e con continuità tutto il materiale necessario ai lavori con le prescritte caratteristiche.

L'Impresa resta responsabile di fornire il quantitativo e di garantire la qualità dei materiali occorrenti al normale avanzamento dei lavori anche se, per far fronte a tale impegno, l'Impresa medesima dovesse abbandonare la cava o località di provenienza, già ritenuta idonea, per attivarne altre ugualmente idonee; tutto ciò senza che l'Impresa possa avanzare pretese di speciali compensi o indennità.

In ogni caso all'Appaltatore non verrà riconosciuto alcun compenso aggiuntivo qualora, per qualunque causa, dovesse variare in aumento la distanza dalle cave individuate ai siti di versamento in cantiere.

Anche tutti gli oneri e prestazioni inerenti al lavoro di cava, come pesatura del materiale, trasporto in cantiere, lavori inerenti alle opere morte, pulizia della cava con trasporto a rifiuto della terra vegetale e del cappellaccio, costruzione di strade di servizio e di baracche per ricovero di operai o del personale di sorveglianza della Stazione Appaltante e quanto altro occorrente sono ad esclusivo carico dell'Impresa.

L'Impresa ha la facoltà di adottare, per la coltivazione delle cave, quei sistemi che ritiene migliori nel proprio interesse, purché si uniformi alle norme vigenti ed alle ulteriori prescrizioni che eventualmente fossero impartite dalle Amministrazioni statali e dalle Autorità militari, con particolare riguardo a quella mineraria di pubblica sicurezza, nonché dalle Amministrazioni regionali, provinciali e comunali.

L'Impresa resta in ogni caso l'unica responsabile di qualunque danno od avaria potesse verificarsi in dipendenza dei lavori di cava od accessori.

Art 1.3 TRACCIAMENTI

Prima di porre mano ai lavori di sterro o riporto, l'Appaltatore è obbligato ad eseguire la picchettazione completa del lavoro, in modo che risultino indicati i limiti degli scavi e dei riporti. A tempo debito dovrà pure stabilire, nei tratti indicati dalla Direzione dei Lavori, le modine o garbe necessarie a determinare con precisione l'andamento delle scarpate tanto degli sterri che dei rilevati, curandone poi la conservazione e rimettendo quelli manomessi durante l'esecuzione dei lavori.

Qualora ai lavori in terra siano connesse opere murarie, l'Appaltatore dovrà procedere al tracciamento di esse, pure con l'obbligo della conservazione dei picchetti, ed, eventualmente, delle modine, come per i lavori in terra.

Art 1.4 SCAVI E RILEVATI IN GENERE

Gli scavi ed i rilevati saranno eseguiti conformemente alle previsioni di progetto, salvo le eventuali varianti che fossero disposte dalla Direzione dei Lavori.

Le terre, macinati e rocce da scavo, per la formazione di aree prative, sottofondi, reinterri, riempimenti, rimodellazioni e rilevati, conferiti in cantiere, devono rispettare le norme vigenti, i limiti previsti dalla Tabella 1 - Valori di concentrazione limite accettabili nel suolo e nel sottosuolo riferiti alla specifica destinazione d'uso dei siti da bonificare, colonna A (Siti ad uso Verde pubblico, privato e residenziale) e colonna B (Siti ad uso Commerciale ed Industriale) dell'Allegato 5 al Titolo V della Parte Quarta del D.Lgs. 152/2006 e s.m.i. e il d.P.R. n.120/2017 "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo".

L'Appaltatore dovrà consegnare le trincee e i rilevati, nonché gli scavi o riempimenti in genere, al giusto piano prescritto, con scarpate regolari e spianate, con i cigli bene tracciati e profilati, compiendo a sue spese, durante l'esecuzione dei lavori, fino al collaudo, gli occorrenti ricarichi o tagli, la ripresa e sistemazione delle scarpate e banchine e l'espurgo dei fossi.

In particolare si prescrive:

a) Scavi. - Nell'esecuzione degli scavi l'Appaltatore dovrà procedere in modo che i cigli siano diligentemente profilati, le scarpate raggiungano l'inclinazione prevista nel progetto o che sarà ritenuta necessaria e prescritta con ordine di servizio dalla Direzione dei Lavori allo scopo di impedire scoscendimenti, restando egli, oltreché totalmente responsabile di eventuali danni alle persone ed alle opere, altresì obbligato a provvedere a suo carico e spese alla rimozione delle materie franate in caso di inadempienza delle disposizioni all'uopo impartitegli.

L'Appaltatore dovrà sviluppare i movimenti di materie con adeguati mezzi e con sufficiente mano d'opera in modo da dare gli scavi, possibilmente, completi a piena sezione in ciascun tratto iniziato. Inoltre, dovrà aprire senza indugio i fossi e le cunette occorrenti e, comunque, mantenere efficiente, a sua cura e spese, il deflusso delle acque anche, se occorra, con canali fugatori.

Le materie provenienti dagli scavi, non utilizzabili e non ritenute idonee, a giudizio della Direzione dei Lavori, per la formazione dei rilevati o per altro impiego nei lavori, dovranno essere portate a rifiuto, depositandole su aree che l'Appaltatore dovrà provvedere a sua cura e spese.

Le località per tali depositi a rifiuto dovranno essere scelte in modo che le materie depositate non arrechino danno ai lavori od alle proprietà pubbliche e private nonché al libero deflusso delle acque pubbliche e private. La Direzione dei Lavori potrà fare asportare, a spese dell'Appaltatore, le materie depositate in contravvenzione alle precedenti disposizioni.

Qualora i materiali siano ceduti all'Appaltatore, il prezzo ad essi convenzionalmente attribuito deve essere dedotto dall'importo netto dei lavori, salvo che la deduzione non sia stata già fatta nella determinazione dei prezzi.

b) Rilevati. - Per la formazione dei rilevati si impiegheranno in generale e salvo quanto segue, fino al loro totale esaurimento, tutte le materie provenienti dagli scavi di cui alla precedente lettera a), se disponibili ed adatte, a giudizio insindacabile della Direzione dei Lavori, per la formazione dei rilevati, dopo aver provveduto alla cernita ed alla eliminazione del materiale non ritenuto idoneo. Potranno essere altresì utilizzate nei rilevati, per la loro formazione, anche le materie provenienti da scavi di opere d'arte e sempreché disponibile ed egualmente ritenute idonee e previa cernita e separazione dei materiali utilizzabili di cui sopra. Quando venissero a mancare in tutto o in parte i materiali di cui sopra, si provvederanno le materie occorrenti scavandole, o come si suol dire prelevandole, da cave di prestito che forniscano materiali riconosciuti pure idonei dalla Direzione dei Lavori.

Le dette cave di prestito da aprire a totale cura e spese dell'Appaltatore al quale sarà corrisposto il solo prezzo unitario di elenco per le materie scavate di tale provenienza, debbono essere coltivate in modo che, tanto durante l'esecuzione degli scavi quanto a scavo ultimato, sia provveduto al loro regolare e completo scolo e restino impediti ristagni di acqua ed impaludamenti. A tale scopo l'Appaltatore, quando occorra, dovrà aprire, sempre a sua cura e spese, opportuni fossi di scolo con sufficiente pendenza.

Le cave di prestito dovranno avere una profondità tale da non pregiudicare la stabilità di alcuna parte dell'opera appaltata, né comunque danneggiare opere pubbliche o private.

Il suolo costituente la base sulla quale si dovranno impiantare i rilevati dovrà essere accuratamente preparato, espurgandolo da piante, cespugli, erbe, canne, radici e da qualsiasi altra materia eterogenea, e trasportando fuori della sede del lavoro le materie di rifiuto.

La base dei suddetti rilevati, se ricadente su terreno pianeggiante, dovrà essere inoltre arata, e se cadente sulla scarpata di altro rilevato esistente o su terreno a declivio trasversale superiore al quindici per cento, dovrà essere preparata a gradini alti circa 30 cm, con inclinazione inversa a quella del rilevato esistente o del terreno.

La terra da trasportare nei rilevati dovrà essere anch'essa previamente espurgata da erbe, canne, radici e da qualsiasi altra materia eterogenea e dovrà essere disposta in rilevato a cordoli alti da 0,30 m a 0,50 m, bene pigiata ed assodata con particolare diligenza specialmente nelle parti addossate alle murature.

Sarà obbligo dell'Appaltatore, escluso qualsiasi compenso, di dare ai rilevati, durante la loro costruzione, quelle maggiori dimensioni richieste dall'assestamento delle terre, affinché, all'epoca del collaudo, i rilevati eseguiti abbiano dimensioni non inferiori a quelle prescritte.

Non si potrà sospendere la costruzione di un rilevato, qualunque sia la causa, senza che ad esso sia stata data una configurazione tale da assicurare lo scolo delle acque piovane. Nella ripresa del lavoro, il rilevato già eseguito dovrà essere espurgato dalle erbe e cespugli che vi fossero nati, nonché configurato a gradoni, praticandovi inoltre dei solchi per il collegamento delle nuove materie con quelle prima impiegate.

Qualora gli scavi ed il trasporto avvengano meccanicamente, si avrà cura che il costipamento sia realizzato costruendo il rilevato in strati di modesta altezza non eccedenti i 30 o i 50 centimetri. Comunque, dovrà farsi in modo che durante la costruzione si conservi un tenore di acqua conveniente, evitando di formare rilevati con terreni la cui densità ottima sia troppo rapidamente variabile col tenore in acqua, e si eseguiranno i lavori, per quanto possibile, in stagione non piovosa, avendo cura, comunque, di assicurare lo scolo delle acque superficiali e profonde durante la costruzione.

Per il rivestimento delle scarpate si dovranno impiegare terre vegetali per gli spessori previsti in progetto od ordinati dalla Direzione dei Lavori.

1.4.1 Gestione dei cantieri di piccole dimensioni

I cantieri di piccole dimensioni rappresentano il tipo di opera maggiormente diffusa sul territorio e comportano movimentazioni minime di terreno a seguito delle attività di scavo. Al fine di procedere alla caratterizzazione delle terre e rocce da scavo per la loro qualifica come sottoprodotti e consentirne la gestione dei materiali in sicurezza, i destinatari del presente capitolato seguiranno le indicazioni operative delle "Linee Guida sull'applicazione della disciplina per l'utilizzo delle terre e rocce da scavo" approvate dal Sistema nazionale per la protezione dell'ambiente (SNPA).

Gli aspetti ivi indicati ed essenziali per la verifica dei requisiti di qualità ambientale delle terre e rocce da scavo prodotte nei piccoli cantieri che si intendono utilizzare come sottoprodotti, riguardano:

- 1) la numerosità dei punti d'indagine e dei campioni da prelevare
- 2) le modalità di formazione dei campioni da inviare ad analisi

Tali modalità operative sono da intendersi preliminari alle operazioni effettive di scavo; qualora invece, per specifiche esigenze operative risulti impossibile effettuare le indagini preliminarmente allo scavo, sarà possibile procedere in corso d'opera.

Numerosità dei campioni

Il numero minimo di punti di prelievo da localizzare nei cantieri di piccole dimensioni è individuato tenendo conto della correlazione di due elementi: l'estensione della superficie di scavo e il volume di terre e rocce oggetto di scavo.

La tabella che segue riporta il numero minimo di campioni da analizzare, incrementabile in relazione all'eventuale presenza di elementi sito specifici quali singolarità geolitologiche o evidenze organolettiche. Nel caso di scavi lineari (per posa condotte e/o sottoservizi, realizzazione scoli irrigui o di bonifica, ecc.), dovrà essere prelevato un campione ogni 500 metri di tracciato, e in ogni caso ad ogni variazione significativa di litologia, fermo restando che deve essere comunque garantito almeno un campione ogni 3.000 mc.

	AREA DI SCAVO	VOLUME DI SCAVO	NUMERO MINIMO DI CAMPIONI
a	=< 1000 mq	=< 3000 mc	1
b	=< 1000 mq	3000 mc - 6000 mc	2
С	1000 mq - 2500 mq	=< 3000 mc	2
d	1000 mq - 2500 mq	3000 mc - 6000 mc	4
e	> 2500 mq	< 6000 mc	DPR 120/17 (All. 2 tab. 2.1)

In merito ad "Interventi di scavo in corsi d'acqua" ed alla "modalità di formazione dei campioni da inviare ad analisi", a seconda della casistica ricorrente, si avrà cura di procedere secondo le indicazioni operative contenute al punto 3.3 delle "Linee Guida sull'applicazione della disciplina per l'utilizzo delle terre e rocce da scavo" approvate dal Sistema nazionale per la protezione dell'ambiente (SNPA).

Art 1.5 RILEVATI COMPATTATI

I rilevati compattati saranno costituiti da terreni adatti, esclusi quelli vegetali (vedi norme di cui all'articolo " *Qualità e Provenienza dei Materiali*" lettera f), da mettersi in opera a strati non eccedenti i 25-30 cm costipati meccanicamente mediante idonei attrezzi (rulli a punte, od a griglia, nonché quelli pneumatici zavorrati secondo la natura del terreno ed eventualmente lo stadio di compattazione - o con piastre vibranti) regolando il numero dei passaggi e l'aggiunta dell'acqua (innaffiamento) in modo da ottenere ancor qui una densità pari al 90% di quella Proctor. Ogni strato sarà costipato nel modo richiesto prima di procedere a ricoprirlo con altro strato ed avrà superiormente la sagoma della monta richiesta per l'opera finita, così da evitarsi ristagni di acqua e danneggiamenti. Qualora nel materiale che costituisce il rilevato siano incluse pietre, queste dovranno risultare ben distribuite nell'insieme dello strato: comunque nello strato superiore sul quale appoggia l'impianto della sovrastruttura tali pietre non dovranno avere dimensioni superiori a 10 cm.

Il terreno di impianto dei rilevati compattati che siano di altezza minore di 0,50 m, qualora sia di natura sciolta o troppo umida, dovrà ancor esso essere compattato, previa scarificazione, al 90% della densità massima, con la relativa umidità ottima. Se detto terreno di impianto del rilevato ha scarsa portanza lo si consoliderà preliminarmente per l'altezza giudicata necessaria, eventualmente sostituendo il terreno in posto con materiali sabbiosi o ghiaiosi.

Particolare cura dovrà aversi nei riempimenti e costipazioni a ridosso dei piedritti, muri d'ala, muri andatori ed opere d'arte in genere.

Sarà obbligo dell'Appaltatore, escluso qualsiasi compenso, di dare ai rilevati, durante la loro costruzione, quelle maggiori dimensioni richieste dall'assestamento delle terre, affinché all'epoca del collaudo i rilevati eseguiti abbiano dimensioni non inferiori a quelle prescritte.

Fa parte della formazione del rilevato oltre la profilatura delle scarpate e delle banchine e dei cigli, e la costruzione degli arginelli se previsti, il ricavare nella piattaforma, all'atto della costruzione e nel corso della sistemazione, il cassonetto di dimensione idonea a ricevere l'ossatura di sottofondo e la massicciata.

Non si potrà sospendere la costruzione di un rilevato, qualunque ne sia la causa, senza che ad esso sia stata data una configurazione tale da assicurare lo scolo delle acque piovane. Nella ripresa del lavoro il rilevato già eseguito dovrà essere spurgato dalle erbe e cespugli che vi fossero nati, nonché configurato a gradoni, praticandovi inoltre dei solchi per il collegamento delle nuove materie con quelle prima impiegate.

In corso di lavoro I'Appaltatore dovrà curare l'apertura di fossetti di guardia a monte scolanti, anche provvisori, affinché le acque piovane non si addossino alla base del rilevato in costruzione.

Nel caso di rilevati compattati su base stabilizzata, i fossi di guardia scolanti al piede dei rilevati dovranno avere possibilmente il fondo più basso dell'impianto dello strato stabilizzato.

Art 1.6 SCAVI DI SBANCAMENTO

Per scavi di sbancamento o tagli a sezione aperta si intendono quelli praticati al di sopra del piano orizzontale, passante per il punto più depresso del terreno naturale o per il punto più depresso delle trincee o splateamenti, precedentemente eseguiti ed aperti almeno da un lato.

Quando l'intero scavo debba risultare aperto su di un lato (caso di un canale fugatore) e non venga ordinato lo scavo a tratti, il punto più depresso è quello terminale.

Appartengono alla categoria degli scavi di sbancamento così generalmente definiti tutti i cosiddetti scavi di splateamento e quelli per allargamento di trincee, tagli di scarpate di rilevati per costruirvi opere di sostegno, scavi per incassatura di opere d'arte (spalle di ponti, spallette di briglie, ecc.) eseguiti superiormente al piano orizzontale determinato come sopra, considerandosi come piano naturale anche l'alveo dei torrenti e dei fiumi.

Art 1.7 SCAVI DI FONDAZIONE

Per scavi di fondazione in generale si intendono quelli ricadenti al di sotto del piano orizzontale di cui all'articolo precedente, chiusi fra le pareti verticali riproducenti il perimetro delle fondazioni delle opere d'arte. Qualunque sia la natura e la qualità del terreno, gli scavi per fondazione dovranno essere spinti fino alla profondità che dalla Direzione dei Lavori verrà ordinata all'atto della loro esecuzione.

Le profondità che si trovino indicate nei disegni di consegna sono perciò di semplice avviso e la Stazione Appaltante si riserva piena facoltà di variarle nella misura che reputerà più conveniente, senza che ciò possa dare all'Appaltatore motivo alcuno di fare eccezioni o domande di speciali compensi, avendo egli soltanto diritto al pagamento del lavoro eseguito, coi prezzi contrattuali stabiliti per le varie profondità da raggiungere.

E' vietato all'Appaltatore, sotto pena di demolire il già fatto, di porre mano alle murature prima che la Direzione dei Lavori abbia verificato ed accettato i piani delle fondazioni.

I piani di fondazione dovranno essere generalmente orizzontali, ma per quelle opere che cadono sopra a falde inclinate potranno, a richiesta della Direzione dei Lavori, essere disposti a gradini ed anche con determinate contropendenze.

Gli scavi di fondazione dovranno di norma essere eseguiti a pareti verticali e l'Appaltatore dovrà, occorrendo, sostenerle con conveniente armatura e sbadacchiature, restando a suo carico ogni danno alle cose ed alle persone che potesse verificarsi per smottamenti o franamenti dei cavi. Questi potranno però, ove ragioni speciali non lo vietino, essere eseguiti con pareti a scarpata. In questo caso non sarà compensato il maggiore scavo eseguito, oltre quello strettamente occorrente per la fondazione dell'opera, e l'Appaltatore dovrà provvedere a sue cure e spese al successivo riempimento del vuoto rimasto intorno alle murature di fondazione dell'opera, con materiale adatto, ed al necessario costipamento di quest'ultimo.

Analogamente dovrà procedere l'Appaltatore senza ulteriore compenso a riempire i vuoti che restassero attorno alle murature stesse, pure essendosi eseguiti scavi a pareti verticali, in conseguenza dell'esecuzione delle murature con riseghe in fondazione.

Per aumentare la superficie d'appoggio la Direzione dei Lavori potrà ordinare per il tratto terminale di fondazione per un'altezza sino ad un metro, che lo scavo sia allargato mediante scampanatura, restando fermo quanto sopra detto circa l'obbligo dell'Appaltatore, ove occorra, di armare convenientemente durante i lavori la parete verticale sovrastante.

Qualora gli scavi si debbano eseguire in presenza di acqua e questa si elevi negli scavi, non oltre però il limite massimo di 20 cm (di seguito contemplato), l'Appaltatore dovrà provvedere, se richiesto dalla Direzione dei Lavori, all'esaurimento dell'acqua stessa coi mezzi che saranno ritenuti più opportuni.

L'Appaltatore dovrà provvedere, a sua cura, spesa ed iniziativa, alle suddette assicurazioni, armature, puntellature e sbadacchiature, nelle quantità e robustezza che per la qualità delle materie da scavare siano richieste, adottando anche tutte le altre precauzioni che fossero ulteriormente riconosciute necessarie, senza rifiutarsi per nessun pretesto di ottemperare alle prescrizioni che al riguardo, e per garantire la sicurezza delle cose e delle persone, gli venissero impartite dalla Direzione dei Lavori. Il legname impiegato a tale scopo, sempreché non si tratti di armature formanti parte integrante dell'opera, da lasciare quindi in loco in proprietà della Stazione Appaltante, resterà di proprietà dell'Appaltatore, che potrà perciò recuperarlo ad opera compiuta. Nessun compenso spetta all'Appaltatore se, per qualsiasi ragione, tale recupero possa risultare soltanto parziale od anche totalmente negativo.

Gli scavi di fondazione che si devono eseguire a profondità maggiore di 20 cm (centimetri venti) sotto il livello costante a cui si stabiliscono le acque eventualmente esistenti nel terreno, sono considerati come scavi subacquei

per tutto il volume ricadente al disotto del piano di livello situato alle cennate profondità d'acqua di 20 cm. Quindi il volume ricadente nella zona dei 20 centimetri suddetti verrà considerato, e perciò pagato, come gli scavi di fondazione in presenza di acqua, precedentemente indicati, ma non come scavo subacqueo.

Gli scavi subacquei saranno invece pagati col relativo prezzo di elenco, nel quale sono compresi tutti gli occorrenti aggottamenti od esaurimenti di acqua con qualsiasi mezzo siano eseguiti o si ritenga opportuno eseguirli.

In mancanza del prezzo suddetto e qualora si stabilissero acque nei cavi in misura superiore a quella di cui sopra, l'Appaltatore dovrà ugualmente provvedere ai necessari esaurimenti col mezzo che si ravviserà più opportuno: e tali esaurimenti saranno compensati a parte ed in aggiunta ai prezzi di elenco per gli scavi in asciutto od in presenza di acqua.

L'Appaltatore sarà però tenuto ad evitare l'affluenza entro i cavi di fondazione di acque provenienti dall'esterno. Nel caso che ciò si verificasse resterà a suo totale carico la spesa per i necessari aggottamenti.

Art 1.8 PARATIE O CASSERI IN LEGNAME PER FONDAZIONI

Le paratie o casseri in legname occorrenti per le fondazioni debbono essere formati con pali o tavoloni o palancole infissi nel suolo e con longarine o filagne di collegamento in uno o più ordini, a distanza conveniente, della qualità e dimensioni che saranno prescritte. I tavoloni debbono essere battuti a perfetto contatto l'uno con l'altro; ogni palo o tavolone che si spezzi sotto la battitura, o che nella discesa devii dalla verticale, deve essere estratto e sostituito a cura ed a spese dell'Appaltatore; esso può essere reinserito regolarmente se ancora utilizzabile a giudizio della Direzione dei Lavori.

Le teste dei pali o dei tavoloni debbono essere munite di adatte cerchiature in ferro per evitare le scheggiature e gli altri guasti che possono essere causati dai colpi di maglio. Le punte dei pali e dei tavoloni debbono essere munite di puntazze di ferro quando la Direzione dei Lavori lo giudichi necessario.

Le teste delle palancole debbono essere portate al livello delle longarine, recidendo la parte sporgente quando sia stata riconosciuta l'impossibilità di farle maggiormente penetrare nel terreno.

Quando le condizioni del sottosuolo lo permettono, i tavoloni o le palancole anziché infissi nel terreno, possono essere posti orizzontalmente sulla fronte dei pali verso lo scavo e debbono essere assicurati ai pali stessi mediante robusta ed abbondante chiodatura, in modo da formare una parete stagna e resistente.

Art. 1.9 MALTE E CONGLOMERATI CEMENTIZI

I quantitativi dei diversi materiali da impiegare per la composizione delle malte e dei conglomerati, secondo le particolari indicazioni che potranno essere imposte dalla Direzione dei Lavori o stabilite nell'elenco prezzi, dovranno corrispondere alle sequenti proporzioni:

1°	Malta comune:	
	- Calce comune in pasta	0,45 m³
	- Sabbia	0,90 m³
2°	Malta semidraulica di pozzolana:	
	- Calce comune in pasta	0,45 m³
	- Sabbia	0,45 m³
	- Pozzolana	0,45 m³
3°	Malta idraulica:	
	- Calce idraulica	kg
	- Sabbia	0,90 m³
4°	Malta idraulica di pozzolana:	
	- Calce comune in pasta	0,45 m³

	- Pozzolana	0,90 m³
5°	Malta cementizia:	
	- Agglomerante cementizio a lenta presa	kg
	- Sabbia	1,00 m³
6°	Malta cementizia (per intonaci):	
	- Agglomerante cementizio a lenta presa	kg
	- Sabbia	1,00 m³
7°	Calcestruzzo idraulico (per fondazione):	
	- Malta idraulica	0,45 m³
	- Pietrisco o ghiaia	0,90 m³
8°	Smalto idraulico per cappe:	
	- Malta idraulica	0,45 m³
	- Pietrisco	0,90 m³
9°	Conglomerato cementizio (per fondazioni non armate):	
	- Cemento normale (a lenta presa)	200 kg
	- Sabbia	0,400 m ³
	- Pietrisco o ghiaia	0,800 m ³
10°	Conglomerato cementizio (per cunette, piazzuole, ecc.):	
	- Agglomerante cementizio a lenta presa	200÷250 kg
	- Sabbia	0,400 m ³
	- Pietrisco o ghiaia	0,800 m³
11°	Conglomerato per calcestruzzi semplici ed armati:	
	- Cemento	300 kg
	- Sabbia	0,400 m ³
	- Pietrisco e ghiaia	0,800 m³
12°	Conglomerato cementizio per pietra artificiale (per parapetti o coronamenti di ponti,	
	ponticelli o tombini):	
	- Agglomerante cementizio a lenta presa	350 kg
	- Sabbia	0,400 m ³
	- Pietrisco o ghiaia	0,800 m ³
	- Graniglia marmo nella parte vista battuta a martellina	m³
13°	Conglomerato per sottofondo di pavimentazioni in cemento a doppio strato:	
	- Agglomerante cementizio a lenta presa	200 kg
	- Sabbia	0,400 m ³
	- Pietrisco	0,800 m ³
14°	Conglomerato per lo strato di usura di pavimenti in cemento a due strati, oppure per	
	pavimentazioni ad unico strato:	
	- Cemento ad alta resistenza	350 kg
	- Sabbia	0,400 m ³
	- Pietrisco	0,800 m³

Quando la Direzione dei Lavori ritenesse di variare tali proporzioni, l'Appaltatore sarà obbligato ad uniformarsi alle prescrizioni della medesima, salvo le conseguenti variazioni di prezzo in base alle nuove proporzioni previste. I materiali, le malte ed i conglomerati, esclusi quelli forniti in sacchi di peso determinato, dovranno ad ogni impasto essere misurati con apposite casse della capacità prescritta dalla Direzione dei Lavori e che l'Appaltatore sarà in obbligo di provvedere e mantenere a sue spese costantemente su tutti i piazzali ove verrà effettuata la manipolazione.

L'impasto dei materiali dovrà essere fatto a braccia d'uomo, sopra aree convenientemente pavimentate, oppure a mezzo di macchine impastatrici o mescolatrici.

Gli ingredienti componenti le malte cementizie saranno prima mescolati a secco, fino ad ottenere un miscuglio di tinta uniforme, il quale verrà poi asperso ripetutamente con la minore quantità di acqua possibile ma sufficiente, rimescolando continuamente.

Nella composizione di calcestruzzi con malta di calce comune od idraulica, si formerà prima l'impasto della malta con le proporzioni prescritte, impiegando la minore quantità di acqua possibile, poi si distribuirà la malta sulla ghiaia o pietrisco e si mescolerà il tutto fino a che ogni elemento sia per risultare uniformemente distribuito nella massa ed avviluppato di malta per tutta la superficie.

Per i conglomerati cementizi semplici o armati gli impasti dovranno essere eseguiti in conformità alle prescrizioni del D.M. 17 gennaio 2018.

Quando sia previsto l'impiego di acciai speciali sagomati ad alto limite elastico deve essere prescritto lo studio preventivo della composizione del conglomerato con esperienze di laboratorio sulla granulometria degli inerti e sul dosaggio di cemento per unità di volume del getto.

Il quantitativo d'acqua deve essere il minimo necessario compatibile con una sufficiente lavorabilità del getto e comunque non superiore allo 0,4 in peso del cemento, essendo inclusa in detto rapporto l'acqua unita agli inerti, il cui quantitativo deve essere periodicamente controllato in cantiere.

I getti debbono essere convenientemente vibrati.

Durante i lavori debbono eseguirsi frequenti controlli della granulometria degli inerti, mentre la resistenza del conglomerato deve essere comprovata da frequenti prove a compressione su cubetti prima e durante i getti.

Gli impasti sia di malta che di conglomerato, dovranno essere preparati solamente nella quantità necessaria, per l'impiego immediato, cioè dovranno essere preparati volta per volta e per quanto è possibile in vicinanza del lavoro. I residui di impasti che non avessero, per qualsiasi ragione, immediato impiego dovranno essere gettati a rifiuto, ad eccezione di quelli di malta formati con calce comune, che potranno essere utilizzati però nella sola stessa giornata del loro confezionamento.

Tutti i prodotti e/o materiali di cui al presente articolo, qualora dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 1.10 BITUMI ED EMULSIONI BITUMINOSE

Come definito nella norma UNI EN 12597, il bitume è un materiale virtualmente non volatile, adesivo e impermeabile derivato dal petrolio greggio oppure presente nell'asfalto nativo; completamente o quasi completamente solubile in toluene, molto viscoso o quasi solido a temperatura ambiente.

Il bitume, pur rappresentando la componente minoritaria (circa il 5% in peso rispetto agli aggregati), costituisce la componente legante dei conglomerati bituminosi, responsabile di tenere insieme le particelle di aggregato garantendo consistenza e coesione sotto carico.

Il bitume è anche un materiale viscoso, caratteristica che lo rende soggetto ad usura, cioè il suo comportamento risente della frequenza con cui viene caricato.

La classificazione e il controllo quantitativo/qualitativo dei bitumi stradali avviene attraverso una serie di prove che consentono di definire parametri empiricamente connessi alle prestazioni in esercizio della pavimentazione. Tali prove rappresentano il riferimento sulla base del quale si fondano le attuali norme tecniche europee per la classificazione e accettazione dei bitumi stradali. Nel seguito se ne descrivono le principali:

Penetrazione (UNI EN 1426): la prova di penetrazione è impiegata per la classificazione dei bitumi. Con questa prova si determina la consistenza e durezza del materiale a temperatura ambiente (es. 25°C), misurando la penetrazione in dmm di un ago standardizzato sotto un carico di 100 g entro 5 s dall'inizio della penetrazione. Quanto più il bitume è molle, tanto maggiore è la penetrazione. La classificazione del bitume viene espressa in base al grado di durezza come intervallo di valori (es. un bitume classificato 50/70 ha una penetrazione compresa tra 50 e 70 dmm).

Punto di rammollimento (prova palla-anello – UNI EN 1427): il bitume caldo viene versato in uno speciale anello di ottone e caricato al centro con una sfera di acciaio di dimensioni e peso standardizzati. Il provino così predisposto viene inserito in un bagno soggetto a riscaldamento. La temperatura del bagno viene incrementata con un gradiente costante fintanto che il bitume, che sotto il peso della sfera tende a deformarsi, non tocca la base del sistema di prova posta a 2,54 cm sotto il piano di partenza. La temperatura del bagno a cui si verifica questa condizione corrisponde al punto di rammollimento (temperatura alla quale il bitume passa dallo stato semisolido allo stato semiliquido). Tale valore restituisce un'idea del comportamento del materiale alle alte temperature di esercizio.

Punto di rottura (prova Fraass – UNI EN 12593): la prova consente di determinare il punto di rottura Fraass (in $^{\circ}$ C), che traduce la fragilità dei leganti bituminosi alle basse temperature. Operativamente la prova prevede di misurare la temperatura alla quale un film di bitume (spessore pari a 0,5 mm) applicato su una piastrina rettangolare metallica (41 \times 20 \times 0,15 mm) presenta sulla sua superficie le prime screpolature per effetto di flessioni cicliche applicate con frequenza ed ampiezza costanti (1 giro/sec) man, mano che la temperatura decresce con gradiente costante (-1 $^{\circ}$ C/min) partendo da una temperatura iniziale di 15 $^{\circ}$ C superiore rispetto al valore Fraass atteso. Si ricava così una valutazione del comportamento del materiale alle basse temperature di esercizio.

Viscosità dinamica (prova a cilindri coassiali – UNI EN 13702): la prova consente di determinare la viscosità di un bitume ad una specifica temperatura attraverso un roto-viscosimetro a cilindri coassiali. Il bitume viene riscaldato e colato (10,5 g) in un cilindro posto all'interno di un forno elettrico che condiziona il provino alla temperatura di prova desiderata (compresa tra 100°C e 165°C). Una girante con punta conica viene quindi immersa nel provino e fatta girare a velocità costante (20 giri/min). Si misura la resistenza che il provino oppone a tale rotazione, direttamente correlabile alla viscosità (misurata in Pa·s). L'andamento della viscosità con la temperatura fornisce un riferimento per valutare la lavorabilità della miscela alle temperature di miscelazione e compattazione. Inoltre, permette di valutare in maniera molto efficace l'eventuale presenza di polimero nei bitumi modificati.

Elasticità (prova di ritorno elastico – UNI EN 12593): la prova consente di determinare le proprietà di elasticità di un bitume ad una specifica temperatura. Un campione di bitume di forma e dimensioni standardizzate è sottoposto, in un bagno termostatico alla temperatura di 25°C, ad una elongazione di 50 mm/min fino ad una elongazione massima di 200 mm, dopodiché si taglia il campione in due ottenendo due lembi. Il ritorno elastico è valutato misurando dopo 30 minuti dal taglio del campione la distanza d (espressa in mm) tra le estremità dei due lembi del provino. Come la prova di viscosità, tale metodologia permette di verificare in maniera efficace la presenza di polimero nei bitumi modificati che presentano un valore di ritorno elastico nettamente superiore a quello manifestato da un bitume tradizionale.

Resistenza all'indurimento per effetto del calore e dell'aria – Metodo RTFOT (UNI EN 12607-1): effettuata per simulare l'invecchiamento di un bitume nella fase di miscelazione e posa in opera del conglomerato. Il bitume, versato all'interno di contenitori di vetro alloggiati su un supporto rotante, viene scaldato a 163°C e trattato con un getto d'aria costante di 4000 ml/minuto per 85 minuti. Dopo il trattamento di invecchiamento si esegue sul bitume recuperato la prova di penetrazione e quella per il punto di rammollimento al fine di verificare il valore di penetrazione residua e l'incremento del punto di rammollimento rispetto al materiale non invecchiato.

Stabilità allo stoccaggio (UNI EN 13399): misura della capacità del sistema bitume-polimero di mantenere caratteristiche omogenee senza dar luogo a fenomeni di separazione tra le fasi.

Il bitume contenuto in un cilindro viene tenuto per 72 ore in posizione verticale a una temperatura costante di 180°C. Al termine della prova si valuta la differenza del valore di penetrazione e punto di rammollimento tra la parte superiore e inferiore del campione.

Nelle forniture del passato, i conglomerati bituminosi per uso stradale hanno impiegato bitume "tal quale" del tipo 50/70 o 70/100. Per contrastare fenomeni di sgranamento e fessurazione e, in generale, migliorare le prestazioni del conglomerato bituminoso in esercizio è stato possibile ricorrere all'impiego di bitume modificato con l'aggiunta di polimeri. Tali varietà di conglomerati sono definiti "soft" e "hard", a seconda che le caratteristiche meccaniche e reologiche del bitume varino entro un intervallo ristretto o elevato per effetto del tenore di polimero presente.

E' sempre raccomandato l'impiego di bitume modificato in tutti gli interventi di nuove opere e risanamento.

L'impiego di bitumi tal quali dovrà essere limitato ai soli casi di risanamento superficiale di strade a basso traffico, dove si interviene per ripristinare la pavimentazione esistente già realizzata con la stessa tipologia.

Emulsioni bituminose

Le emulsioni bituminose sono un sistema eterogeneo termodinamicamente instabile che include almeno due fasi, acqua e bitume mescolati con agenti tensioattivi o emulsionanti necessari per disperdere la componente legante e aumentare la stabilità del sistema.

I bitumi utilizzati per la fabbricazione delle emulsioni bituminose destinate a lavorazioni stradali possono essere modificati o non, eventualmente fluidificati o flussati, secondo le prescrizioni della norma UNI/TR 11362.

Il contenuto di bitume residuo, uno dei parametri fondamentali per la descrizione e classificazione delle emulsioni, può variare dal 50 al 70% (rapporto volumetrico percentuale del bitume disperso sul volume totale).

Le emulsioni possono essere classificate anche in base a due ulteriori parametri: il carattere ionico e la velocità di rottura. (vedi UNI EN 13808)

La classificazione secondo il carattere ionico distingue le emulsioni in anioniche (basiche, con carica negativa – non più ammesse dalle normative vigenti) e cationiche (acide, con carica positiva). Considerando invece la velocità di rottura (momento in cui l'acqua si separa dal bitume e comincia il fenomeno della "presa") si può far riferimento a: emulsioni rapide, medie, lente, super rapide e sovrastabilizzate.

Nel settore delle costruzioni stradali l'utilizzo delle emulsioni bituminose copre un largo spettro di impiego: da legante bidimensionale capace di rendere solidali e impermeabili gli strati di una pavimentazione (es. mani d'attacco e di ancoraggio), a legante tridimensionale da impiegarsi nei conglomerati per rendere coeso e stabile lo scheletro litico degli aggregati lapidei (lavorazioni a freddo: riciclaggio, trattamenti superficiali, slurry seal, depolverizzazione e impregnazioni) e in condizioni ambientali limite (es. freddo e umidità) sostituendo il bitume caldo.

Requisiti per l'accettazione dei bitumi e delle emulsioni bituminose

Bitumi tal quali		Bitume 50/70	Bitume 70/100
Caratteristiche	U.M.		Valore
penetrazione a 25 °C	dmm	50-70	70-100
punto di rammollimento	°C	45-60	40-60
punto di rottura Fraass	°C	<= -6	<= -8
ritorno elastico	%	-	-
stabilità allo stoccaggio	°C	-	-
viscosità dinamica (160 °C)	Pa*s	0,03 - 0,10	0,02 - 0,10

Bitumi modificati con aggiunta di polimeri				
Caratteristiche	U.M.	Base modifica BM	Soft	Hard
penetrazione a 25 °C	dmm	80-100	50-70	50-70
punto di rammollimento	°C	40-60	60-80	70-90
punto di rottura Fraass	°C	<= -8	<= -10	<= -12
ritorno elastico a 25 °C	%	-	>= 70	>= 80
stabilità allo stoccaggio	°C	-	<= 3	<= 3
viscosità dinamica (160 °C)	Pa*s	0,01 - 0,10	0,10 - 0,35	0,15 - 0,45

	EMULSIONI CATIO	NICHE NON MODIFICATE	
Caratteristiche	U.M.	a rapida rottura	a media velocità

Contenuto d'acqua	% in peso	<= 40	<= 45
Contenuto di bitume	% in peso	> = 60	> = 55
Grado di acidità (pH)		2 - 5	2 - 5
	Caratter	ristiche del bitume estratto	
Penetrazione a 25 °C	dmm	50-120	100-150
Punto di rammollimento	°C	>= 40	>= 40
Punto di rottura Fraass	°C	<= -8	<= -8

EMULSIONI CATIONICHE MODIFICATE			
Caratteristiche	U.M.	Valori	
Contenuto d'acqua	% in peso	<=40	
Contenuto di bitume	% in peso	>=60	
Grado di acidità (pH)		2 - 4	
Polarità delle particelle		positiva (cationiche) o negativa (anioniche)	
Sedimentazione a 7 gg	%	< 10	
Caratteristiche del bitume estratto			
Penetrazione a 25 °C	dmm	50-120	
Punto di rammollimento	°C	>= 40	
Punto di rottura Fraass	°C	<= -8	
Ritorno elastico a 25 °C	%	>= 55	

Tutti i prodotti e/o materiali di cui al presente articolo, qualora dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art 1.11 OPERE IN CONGLOMERATO CEMENTIZIO ARMATO E CEMENTO ARMATO PRECOMPRESSO

Nell'esecuzione delle opere in cemento armato normale e precompresso l'Appaltatore dovrà attenersi strettamente a tutte le norme vigenti per l'accettazione dei cementi e per l'esecuzione delle opere in conglomerato cementizio e a struttura metallica (D.M. 17 gennaio 2018 e D.P.R. 380/2001 e s.m.i.).

Nella formazione dei conglomerati di cemento si deve avere la massima cura affinché i componenti riescano intimamente mescolati, bene incorporati e ben distribuiti nella massa.

Gli impasti debbono essere preparati soltanto nella quantità necessaria per l'impiego immediato e cioè debbono essere preparati di volta in volta e per quanto possibile in vicinanza del lavoro.

Per ogni impasto si devono misurare le quantità dei vari componenti, in modo da assicurare che le proporzioni siano nella misura prescritta, mescolando da prima a secco il cemento con la sabbia, poi questa con la ghiaia o il

pietrisco ed in seguito aggiungere l'acqua con ripetute aspersioni, continuando così a rimescolare l'impasto finché assuma l'aspetto di terra appena umida.

Costruito ove occorra il cassero per il getto, si comincia il versamento dello smalto cementizio che deve essere battuto fortemente a strati di piccola altezza finché l'acqua affiori in superficie. Il getto sarà eseguito a strati di spessore non superiore a 15 cm.

Contro le pareti dei casseri, per la superficie in vista, si deve disporre della malta in modo da evitare per quanto sia possibile la formazione di vani e di ammanchi.

I casseri occorrenti per le opere di getto debbono essere sufficientemente robusti da resistere senza deformarsi alla spinta laterale dei calcestruzzi durante la pigiatura.

Quando sia ritenuto necessario, i conglomerati potranno essere vibrati con adatti mezzi. I conglomerati con cemento ad alta resistenza è opportuno che vengano vibrati.

La vibrazione deve essere fatta per strati di conglomerato dello spessore che verrà indicato dalla Direzione dei lavori e comunque non superiore a 15 cm ed ogni strato non dovrà essere vibrato oltre un'ora dopo il sottostante.

I mezzi da usarsi per la vibrazione potranno essere interni (vibratori a lamiera o ad ago) ovvero esterni da applicarsi alla superficie esterna del getto o alle casseforme.

 $I\ vibratori\ interni\ sono\ in\ genere\ più\ efficaci,\ si\ deve\ per\`o\ evitare\ che\ essi\ provochino\ spostamenti\ nelle\ armature.$

La vibrazione superficiale viene di regola applicata alle solette di piccolo e medio spessore (massimo 20 cm).

Quando sia necessario vibrare la cassaforma è consigliabile fissare rigidamente il vibratore alla cassaforma stessa che deve essere opportunamente rinforzata. Sono da consigliarsi vibratori a frequenza elevata (da 4.000 a 12.000 cicli al minuto ed anche più).

I vibratori interni vengono immersi nel getto e ritirati lentamente in modo da evitare la formazione dei vuoti; nei due percorsi si potrà avere una velocità media di 8-10 cm/sec; lo spessore del singolo strato dipende dalla potenza del vibratore e dalla dimensione dell'utensile.

Il raggio di azione viene rilevato sperimentalmente caso per caso e quindi i punti di attacco vengono distanziati in modo che l'intera massa risulti lavorata in maniera omogenea (distanza media 50 cm).

Si dovrà mettere particolare cura per evitare la segregazione del conglomerato; per questo esso dovrà essere asciutto con la consistenza di terra umida debolmente plastica.

La granulometria dovrà essere studiata anche in relazione alla vibrazione: con malta in eccesso si ha sedimentazione degli inerti in strati di diversa pezzatura, con malta in difetto si ha precipitazione della malta e vuoti negli strati superiori.

La vibrazione non deve prolungarsi troppo, di regola viene sospesa quando appare in superficie un lieve strato di malta omogenea ricca di acqua.

Man mano che una parte del lavoro è finita, la superficie deve essere periodicamente innaffiata affinché la presa avvenga in modo uniforme, e, quando occorra, anche coperta con sabbia o tela mantenuta umida per proteggere l'opera da variazioni troppo rapide di temperatura.

Le riprese debbono essere, per quanto possibile, evitate.

Quando siano veramente inevitabili, si deve umettare bene la superficie del conglomerato eseguito precedentemente se questo è ancora fresco; dove la presa sia iniziata o fatta si deve raschiare la superficie stessa e prima di versare il nuovo conglomerato, applicare un sottile strato di malta di cemento e sabbia nelle proporzioni che, a seconda della natura dell'opera, saranno di volta in volta giudicate necessarie dalla Direzione dei Lavori, in modo da assicurare un buon collegamento dell'impasto nuovo col vecchio. Si deve fare anche la lavatura se la ripresa non è di fresca data.

In tutti i casi il conglomerato deve essere posto in opera per strati disposti normalmente agli sforzi dai quali la massa muraria di calcestruzzo è sollecitata.

Quando l'opera venga costruita per tratti o segmenti successivi, ciascuno di essi deve inoltre essere formato e disposto in guisa che le superfici di contatto siano normali alla direzione degli sforzi a cui la massa muraria, costituita dai tratti o segmenti stessi, è assoggettata.

Le pareti dei casseri di contenimento del conglomerato di getto possono essere tolte solo quando il conglomerato abbia raggiunto un grado di maturazione sufficiente a garantire che la solidità dell'opera non abbia per tale operazione a soffrirne neanche minimamente.

Per lavori da eseguirsi con smalt cementizio in presenza di acqua marina, si debbono usare tutte le cure speciali atte particolarmente ad impedire la penetrazione di acqua di mare nella massa cementizia.

Per il cemento armato da eseguirsi per opere lambite dalle acque marine ovvero da eseguirsi sul litorale marino ovvero a breve distanza dal mare, l'armatura metallica dovrà essere posta in opera in modo da essere protetta da almeno uno spessore di 4 centimetri di calcestruzzo, e le superfici esterne delle strutture in cemento armato dovranno essere boiaccate.

Per il cemento armato precompresso si studieranno la scelta dei componenti e le migliori proporzioni dell'impasto con accurati studi preventivi di lavori.

Per le opere in cemento armato precompresso devono essere sempre usati, nei calcestruzzi, cementi ad alta resistenza con le prescritte caratteristiche degli inerti da controllarsi continuamente durante la costruzione, impasti e dosaggi da effettuarsi con mezzi meccanici, acciai di particolari caratteristiche meccaniche, osservando scrupolosamente in tutto le norme di cui al D.M. 17 gennaio 2018 e al D.P.R. 380/2001 e s.m.i.

Qualunque sia l'importanza delle opere da eseguire in cemento armato, all'Appaltatore spetta sempre la completa ed unica responsabilità della loro regolare ed esatta esecuzione in conformità del progetto appaltato e degli elaborati di esecutivi che gli saranno consegnati mediante ordini di servizio dalla Direzione dei lavori in corso di appalto e prima dell'inizio delle costruzioni.

L'Appaltatore dovrà avere a disposizione per la condotta effettiva dei lavori un ingegnere competente per i lavori in cemento armato, il quale risiederà sul posto per tutta la durata dei lavori medesimi. Spetta in ogni caso all'Appaltatore la completa ed unica responsabilità della regolare ed esatta esecuzione delle opere in cemento armato.

Le prove di carico verranno eseguite a spese dell'Appaltatore e le modalità di esse saranno fissate dalla Direzione dei Lavori, tenendo presente che tutte le opere dovranno essere atte a sopportare i carichi fissati nelle norme sopra citate.

Le prove di carico non si potranno effettuare prima di 50 giorni dall'ultimazione del getto.

Art 1.12 RABBOCCATURE

Le rabboccature che occorresse eseguire sui muri vecchi o comunque non eseguiti con faccia vista in malta o sui muri a secco saranno formate con malta del tipo di cui all'articolo "*Malte e Conglomeratl*".

Prima dell'applicazione della malta, le connessure saranno diligentemente ripulite, fino ad una conveniente profondità, lavate con acqua abbondante e poi riscagliate, ove occorra, e profilate con apposito ferro.

Art 1.13 DEMOLIZIONI

Le demolizioni in genere saranno eseguite con ordine e con le necessarie precauzioni, in modo da non danneggiare le residue murature, da prevenire qualsiasi infortunio agli addetti al lavoro e da evitare incomodi, danni collaterali e disturbi.

Rimane pertanto vietato di gettare dall'alto i materiali in genere, che invece devono essere trasportati o guidati in basso, e di sollevare polvere, per il che tanto le murature quanto i materiali di risulta dovranno essere opportunamente bagnati.

Nelle demolizioni e rimozioni l'Appaltatore deve inoltre provvedere alle eventuali necessarie puntellature per sostenere le parti che devono restare e disporre in modo da non deteriorare i materiali risultanti, i quali devono

ancora potersi impiegare nei limiti concordati con la Direzione dei Lavori, sotto pena di rivalsa di danni verso la Stazione Appaltante.

I materiali provenienti da escavazioni o demolizioni sono di proprietà della Stazione Appaltante la quale potrà ordinare all'Appaltatore di impiegarli in tutto od in parte nei lavori appaltati.

L'Appaltatore dovrà provvedere per la loro cernita, trasporto in deposito, ecc. intendendosi di ciò compensato coi prezzi degli scavi e delle demolizioni relative.

Qualora detti materiali siano ceduti all'Appaltatore, il prezzo ad essi convenzionalmente attribuito deve essere dedotto dall'importo netto dei lavori, salvo che la deduzione non sia stata già fatta nella determinazione dei prezzi.

I materiali non utilizzati provenienti dalle demolizioni dovranno sempre, e al più presto, venire trasportati, a cura e spese dell'Impresa, in rifiuto alle pubbliche discariche e comunque fuori la sede dei lavori con le norme o cautele disposte per gli analoghi scarichi in rifiuto di materie di cui all'articolo "*Scavi e Rilevati in Genere*", lettera a).

Art 1.14 ACQUEDOTTI E TOMBINI TUBOLARI

Per gli acquedotti tubolari, qualora siano eseguiti in conglomerato cementizio gettati in opera, nella parte inferiore della canna verranno usati semplici sagome; nella parte superiore verranno usate apposite barulle di pronto disarmo. Essi non dovranno avere diametro inferiore a 80 cm qualora siano a servizio del corpo stradale.

Qualora vengano impiegati tubi di cemento per i quali è valida sempre quest'ultima prescrizione, questi dovranno essere fabbricati a regola d'arte, con diametro uniforme e gli spessori corrispondenti alle prescrizioni sottospecificate, saranno bene stagionati e di perfetto impasto e lavorazione, sonori alla percussione, senza screpolature e sbavature e muniti di apposite sagomature alle estremità per consentire un giunto a sicura tenuta.

I tubi saranno posati in opera alle livellette e piani stabiliti e su di una platea di calcestruzzo magro a 2 q di cemento per m³ di impasto in opera dello spessore più sotto indicato, salvo diversa prescrizione della Direzione dei Lavori. Verranno inoltre rinfiancati di calcestruzzo a 2,50 q di cemento per m³ di impasto in opera a seconda della sagomatura prevista nei disegni di progetto, previa perfetta sigillatura dei giunti con malta di puro cemento.

Ø Tubi in cm	Spessore dei tubi in mm	Spessore della platea in cm
80	70	20
100	85	25
120	100	30

Manufatti tubolari in lamiera zincata

Le prescrizioni che seguono si riferiscono a manufatti per tombini e sottopassi aventi struttura portante costituita da lamiera di acciaio con profilatura ondulata con onda normale alla generatrice.

L'acciaio della lamiera ondulata sarà dello spessore di 1,5 mm con tolleranza UNI (Norma UNI EN 10162 e UNI 8661), con carico unitario di rottura non minore di 34 Kg\mm² e sarà protetto su entrambe le facce da zincatura bagno caldo praticata dopo l'avvenuto taglio e piegatura dell'elemento in quantità non inferiore a 305 g\m² per faccia.

La verifica della stabilità statica delle strutture sarà effettuata in funzione dei diametri e dei carichi esterni applicati adottando uno dei metodi della scienza delle costruzioni (anello compresso, stabilità dall'equilibrio elastico, lavori virtuali) sempre però con coefficiente di sicurezza non inferiore a 4.

Le strutture finite dovranno essere esenti da difetti come: soffiature, bolle di fusione, macchie, scalfiture, parti non zincate, ecc. Per manufatti da impiegare in ambienti chimicamente aggressivi si dovrà provvedere alla loro protezione mediante rivestimento di mastice bituminoso, asfaltico o equivalente avente uno spessore minimo di 1,5 mm inserito sulla cresta delle ondulazioni, che dovrà corrispondere ad un peso di 1,5 Kg/m² per faccia applicato a

spruzzo o a pennello, ovvero di bitume ossidato applicato mediante immersione a caldo negli stessi quantitativi precedentemente indicati.

Alla Direzione dei Lavori è riservato di far assistere proprio personale alla fabbricazione dei manufatti allo scopo di controllare la corretta esecuzione secondo le prescrizioni sopra indicate ed effettuare presso lo stabilimento di produzione le prove chimiche e meccaniche per accertare la qualità e lo spessore del materiale; tale controllo potrà essere fatto in una qualunque delle fasi di fabbricazione senza peraltro intralciare il normale andamento della produzione.

Il controllo del peso di rivestimento di zinco sarà effettuato secondo le norme indicate dalle specifiche ASTM A 90. Il controllo della centratura della zincatura sarà eseguito immergendo i campioni in una soluzione di CuSO4, nella misura di 36 g ogni 100 di acqua distillata (come previsto dalle tabelle UNI EN 10244-1 e UNI EN 10244-2). Essi dovranno resistere all'immersione senza che appaiano evidenti tracce di rame.

Il controllo dello spessore verrà fatto sistematicamente ed avrà esito positivo se gli spessori misurati in più punti del manufatto rientrano nei limiti delle tolleranze prescritte.

Nel caso che gli accertamenti su un elemento non trovino corrispondenza alle caratteristiche previste ed il materiale presenti evidenti difetti saranno presi in esame altri 2 elementi; se l'accertamento di questi 2 elementi è positivo si accetta la partita, se negativo si scarta la partita. Se un elemento è positivo e l'altro no, si controllano 3 elementi, se uno di questi è negativo si scarta la partita.

I pesi, in rapporto allo spessore dei vari diametri impiegati, dovranno risultare da tabelle fornite da ogni fabbricante, con tolleranza del \pm 5%.

Agli effetti contabili sarà compensato il peso effettivo risultante da apposito verbale di pesatura eseguito in contraddittorio purché la partita rientri nei limiti di tolleranza sopraindicati. Qualora il peso effettivo sia inferiore al peso diminuito della tolleranza, la Direzione dei Lavori non accetterà la fornitura. Se il peso effettivo fosse invece superiore al peso teorico aumentato della tolleranza, verrà compensato solo il peso teorico aumentato dei valori della tolleranza.

Le strutture impiegate saranno dei seguenti tipi:

1) Ad elementi incastrati per tombini.

L'ampiezza dell'onda sarà di 67,7 mm (pollici 2 e 3/4) e la profondità di 12,7 mm (1/2 pollice); la lunghezza dell'intero manufatto, al netto di eventuali testate, sarà un multiplo di 0,61 m (2 piedi).

Il tipo sarà costituito da due mezze sezioni cilindriche ondulate, curvate al diametro prescritto; dei due bordi longitudinali di ogni elemento l'uno sarà a diritto-filo e l'altro ad intagli, tali da formare quattro riseghe atte a ricevere, ad "incastro", il bordo diritto dell'altro elemento.

Nel montaggio del tubo le sovrapposizioni circolari dovranno essere sfalsate, facendo sì che ogni elemento superiore si innesti sulla metà circa dei due elementi inferiori corrispondenti.

Gli opposti elementi verranno legati fra loro, in senso longitudinale mediante appositi ganci in acciaio zincato. Le forme impiegabili, nel tipo ad elementi incastrati, saranno: la circolare con diametro variabile da 0,30 m a 1,50 m e che potrà essere fornita con una preformazione ellittica massima del 5% in rapporto al diametro, la policentrica anche ribassata con luce minima di 0,30 e luce massima di 1,75 m.

2) A piastre multiple per tombini e sottopassi.

L'ampiezza dell'onda sarà di 152,4 mm (pollici 6) e la profondità di 50,8 mm (pollici 2). Il raggio della curva interna della gola dovrà essere almeno di 28,6 mm (pollici 1/8).

Le piastre saranno fornite in misura standard ad elementi tali da fornire, montate in opera, un vano la cui lunghezza sia multiplo di 0,61 m.

I bulloni di giunzione delle piastre dovranno essere di diametro non inferiore a 3/4 di pollice ed appartenere alla classe G 8 (Norme UNI EN ISO 4759-1; UNI EN ISO 898-1; UNI EN ISO 898-2; UNI EN ISO 4042; UNI EN ISO 3269; UNI EN ISO 4759-1).

Le teste dei bulloni dei cavi dovranno assicurare una perfetta adesione ed occorrendo si dovranno impiegare speciali rondelle. Le forme di manufatti, da realizzarsi mediante piastre multiple circolari, con diametro compreso da 1,50 m a 6,40 m, potranno essere fornite con una preformazione ellittica massima del 5% in

rapporto al diametro; ribassate con luce variabile da 1,80 m a 6,50 m; ad arco con luce variabile da 1,80 m a 9,00 m; policentriche (per sottopassi), con luce variabile da 2,20 m a 7,00 m.

Art 1.15 STRATIFICAZIONE DI ASFALTO COLATO

Sopra le solette dei ponti in cemento armato, dopo che le strutture saranno ben asciutte, si stenderà un manto di asfalto costituito da asfalto colato dello spessore di 20 mm la cui miscela dovrà corrispondere alle seguenti caratteristiche:

a) bitume penetrazione 50 ± 70 il 15% in peso;

b) pani di mastice in asfalto il 30% in peso;c) sabbia da 0 a 2 mm il 55% in peso.

Lo stendimento dell'asfalto colato dovrà essere effettuato in due riprese aventi, ciascuna, lo spessore di un centimetro.

Si avrà cura, nello stendimento del secondo strato, che i giunti siano sfalsati.

Il punto di rammollimento del colato dovrà essere compreso fra 50 °C e 70 °C.

Art 1.16 DRENAGGI E FOGNATURE

I drenaggi e le fognature di risanamento del corpo stradale e zone circostanti che si rendessero necessari saranno sempre eseguiti dallo sbocco a valle del cunicolo di scolo verso il centro della fognatura propriamente detta e lungo la medesima, procedendo da valle verso monte, per il deflusso regolare delle acque. Prima di stabilire definitivamente il piano di fondo del drenaggio, onde assicurarsi di raggiungere in ogni punto lo strato impermeabile, la Direzione dei Lavori disporrà all'atto esecutivo quanti pozzi riterrà necessario praticare ed in relazione al saggio ove risulti il punto più depresso dello strato impermeabile lungo l'asse del drenaggio, sarà stabilita la profondità di questo e la pendenza del cunicolo.

Detti pozzi saranno scavati della lunghezza da 2 a 3 m, della larghezza uguale a quella del drenaggio in corrispondenza dell'asse del drenaggio. Detti scavi saranno valutati agli stessi prezzi stabiliti nell'annesso elenco per gli scavi di fondazione e l'Appaltatore non potrà avanzare pretese di maggiori compensi quali che siano il numero e l'ubicazione di questi pozzi. Le pareti dei drenaggi e dei cunicoli di scolo ed anche quelle dei pozzi saranno, dove occorra, sostenuti da appositi rivestimenti di tavole o tavoloni con robuste armature in legname in relazione alla natura dei terreni attraversati.

Il fondo dei drenaggi dovrà di norma essere rivestito in calcestruzzo che nella parte centrale sarà sagomato a cunetta e su tale rivestimento si costruirà dal lato a valle un muretto in malta, da quello a monte un muretto a secco, per l'altezza da 20 a 40 cm secondo l'importanza del drenaggio, così da costituire un cunicolo di scolo, da coprire con lastroni e successivamente col riempimento di cui all'articolo "*Rilevati e Rinterri Addossati alle Murature e Riempimenti con Pietrame*".

Tubi perforati per drenaggi

I tubi per drenaggio avranno struttura portante costituita da lamiera d'acciaio con profilatura ondulata con onda elicoidale continua da un capo all'altro di ogni singolo tronco, in modo che una sezione normale alla direzione dell'onda, rappresenti una linea simile ad una sinusoide.

L'acciaio della lamiera ondulata dello spessore minimo di 1,2 mm - con tolleranza UNI (Norme UNI EN 10162 e UNI 8661) - dovrà avere carico unitario di rottura non inferiore a 34/mm² e sarà protetto su entrambe le facce da zincatura eseguita secondo il processo Sendzmir con 480 grammi nominali di zinco per metro quadrato.

L'ampiezza dell'onda sarà di 38 mm (pollici 1/2) e la profondità di 6,35 mm (1/4 di pollice).

Sulle condotte saranno praticati dei fori del diametro di 0,9 cm (tolleranza 0,1 cm) che saranno distribuiti in serie longitudinali con interasse di 38 mm, tutti disposti in un quarto di tubo. I singoli tronchi, di lunghezza non superiore

a 9 m, saranno uniti tra loro mediante fasce di giunzione da fissare con bulloni. Per questo tipo di tubo l'unica forma impiegabile è quella circolare con diametro variabile da 15 a 25 cm.

Tubazioni per lo scarico delle acque di superficie dai rilevati

Saranno dello stesso materiale ed avranno le stesse caratteristiche delle tubazioni di cui al precedente paragrafo con la sola differenza che non avranno fori.

Posa in opera

Per la posa in opera dei suddetti manufatti dovrà essere predisposto un adeguato appoggio, ricavando nel piano di posa (costituito da terreno naturale o eventuale rilevato preesistente) un vano opportunamente profilato e accuratamente compattato, secondo la sagoma da ricevere ed interponendo, fra il terreno e la tubazione, un cuscinetto di materiale granulare fino (max 15 mm) avente spessore di almeno 30 cm.

Il rinterro dei quarti inferiori delle condotte dovrà essere fatto con pestelli meccanici o con pestelli a mano nei punti ove i primi non siano impiegabili.

Il costipamento del materiale riportato sui fianchi dovrà essere fatto a strati di 15 mm utilizzando anche i normali mezzi costipanti dei rilevati, salvo le parti immediatamente adiacenti alle strutture dove il costipamento verrà fatto con pestelli pneumatici o a mano. Occorrerà evitare che i mezzi costipatori lavorino "a contatto" della struttura metallica. Le parti terminali dei manufatti dovranno essere munite di testate metalliche prefabbricate oppure in muratura, in conformità dei tipi adottati.

L'installazione dei tubi di drenaggio dovrà essere iniziata dal punto di uscita in modo da permettere all'acqua di scolare fuori dello scavo in apposito scavo della larghezza di 0,50 m circa. Questi tubi dovranno essere posti in opera in modo che i fori si trovino nel quarto inferiore della circonferenza.

L'installazione dei tubi di scarico dai rilevati verrà fatta in cunicoli scavati lungo la massima pendenza della scarpata della profondità media di 0,40 m e della larghezza strettamente sufficiente per la posa del tubo, che dovrà essere ricoperto con il materiale di scavo, in modo da ripristinare la continuità della scarpata.

Il materiale di rinterro dovrà essere permeabile in modo da consentire il rapido passaggio dell'acqua e dovrà inoltre funzionare da filtro onde trattenere le particelle minute in sospensione impedendone l'entrata con la conseguente ostruzione del tubo; si impiegherà sabbia per calcestruzzo contenente pietrisco medio ed esente da limo. Il rinterro dovrà essere eseguito in strati e ben battuto onde evitare cedimenti causati da assestamenti.

Per quanto espressamente non contemplato si rinvia alla seguente normativa tecnica: AASHTO M 36 e M 167.

Art. 1.17 ORDINE DA TENERSI NELL'ANDAMENTO DEI LAVORI

Prima di dare inizio a lavori di sistemazione, varianti, allargamenti ed attraversamento di strade esistenti, l'Appaltatore è tenuto ad informarsi presso gli enti proprietari delle strade interessate dall'esecuzione delle opere (Compartimento dell'A.N.A.S., Province, Comuni, Consorzi) se eventualmente nelle zone nelle quali ricadono le opere stesse esistano cavi sotterranei (telefonici, telegrafici, elettrici) o condutture (acquedotti, oleodotti, metanodotti ecc.).

In caso affermativo l'Appaltatore dovrà comunicare agli enti proprietari di dette opere (Circolo Costruzioni Telegrafiche Telefoniche, Comuni, Province, Consorzi, Società ecc.) la data presumibile dell'esecuzione delle opere nelle zone interessate, chiedendo altresì tutti quei dati (ubicazione, profondità) necessari al fine di potere eseguire i lavori evitando danni alle cennate opere.

Il maggiore onere al quale l'Appaltatore dovrà sottostare per l'esecuzione delle opere in dette condizioni si intende compreso e compensato coi prezzi di elenco.

Qualora nonostante le cautele usate si dovessero manifestare danni ai cavi od alle condotte, l'Impresa dovrà provvedere a darne immediato avviso mediante telegramma sia agli enti proprietari delle strade, che agli enti proprietari delle opere danneggiate ed alla Direzione dei Lavori.

Nei confronti dei proprietari delle opere danneggiate l'unico responsabile rimane l'Appaltatore, rimanendo del tutto estranea la Stazione Appaltante da qualsiasi vertenza, sia essa civile che penale.

In genere l'Appaltatore avrà facoltà di sviluppare i lavori nel modo che crederà più conveniente per darli perfettamente compiuti nel termine contrattuale purché, a giudizio della Direzione dei Lavori, non riesca pregiudizievole alla buona riuscita delle opere ed agli interessi della Stazione Appaltante.

La Stazione Appaltante si riserva ad ogni modo il diritto di stabilire l'esecuzione di un determinato lavoro entro un congruo termine perentorio, senza che l'Appaltatore possa rifiutarsi o farne oggetto di richiesta di speciali compensi.

Appena costatata l'ultimazione dei lavori, la strada sarà aperta al pubblico transito. La Stazione Appaltante però si riserva la facoltà di aprire al transito i tratti parziali del tronco che venissero progressivamente ultimati a partire dall'origine o dalla fine del tronco, senza che ciò possa dar diritto all'Appaltatore di avanzare pretese all'infuori della rivalsa, ai prezzi di elenco, dei ricarichi di massicciata o delle riprese di trattamento superficiale e delle altre pavimentazioni che si rendessero necessarie.

CAPITOLO 2

CARREGGIATA

Art. 2.1 PREMESSA

Con il termine pavimentazione stradale si indica sinteticamente la sovrastruttura interessata dal moto dei veicoli, atta a garantire nel tempo la transitabilità del traffico veicolare in condizioni di comfort e sicurezza. Essa deve ripartire sul terreno (sottofondo) le azioni statiche e dinamiche dei mezzi di trasporto, fornire una superficie di rotolamento regolare e poco deformabile, proteggere il terreno sottostante dagli agenti atmosferici.

In generale, dalla quota più profonda verso la superficie, si individuano i sequenti strati del corpo stradale:

sottofondo (terreno naturale in sito o ultimo strato del rilevato);

e sovrastruttura, così composta:

- fondazione;
- base;
- binder (o collegamento);
- usura (o tappetino).

In linea generale, salvo diversa disposizione della Direzione dei Lavori, la sagoma stradale per tratti in rettifilo sarà costituita da due falde inclinate in senso opposto aventi pendenza trasversale del $1,5 \div 2,0\%$, raccordate in asse da un arco di cerchio avente tangente di m 0,50. Alle banchine sarà invece assegnata la pendenza trasversale del $2,0 \div 5,0\%$.

Le curve saranno convenientemente rialzate sul lato esterno con pendenza che la Direzione dei Lavori stabilirà in relazione al raggio della curva e con gli opportuni tronchi di transizione per il raccordo della sagoma in curva con quella dei rettifili o altre curve precedenti e seguenti.

Il tipo e lo spessore dei vari strati, costituenti la sovrastruttura, saranno quelli stabiliti, per ciascun tratto, dalla Direzione dei Lavori, in base ai risultati delle indagini geotecniche e di laboratorio.

L'Impresa indicherà alla Direzione dei Lavori i materiali, le terre e la loro provenienza, e le granulometrie che intende impiegare strato per strato, in conformità degli articoli che seguono.

La Direzione dei Lavori ordinerà prove su detti materiali, o su altri di sua scelta, presso Laboratori ufficiali di fiducia della Stazione Appaltante. Per il controllo delle caratteristiche tali prove verranno, di norma, ripetute sistematicamente, durante l'esecuzione dei lavori, nei laboratori di cantiere o presso gli stessi Laboratori ufficiali.

L'approvazione della Direzione dei Lavori circa i materiali, le attrezzature, i metodi di lavorazione, non solleverà l'Impresa dalla responsabilità circa la buona riuscita del lavoro.

L'Impresa avrà cura di garantire la costanza nella massa, nel tempo, delle caratteristiche delle miscele, degli impasti e della sovrastruttura resa in opera.

Salvo che non sia diversamente disposto dagli articoli che seguono, la superficie finita della pavimentazione non dovrà scostarsi dalla sagoma di progetto di oltre 3 mm, controllata a mezzo di un regolo lungo m 4,00 disposto secondo due direzioni ortogonali.

La pavimentazione stradale sui ponti deve sottrarre alla usura ed alla diretta azione del traffico l'estradosso del ponte e gli strati di impermeabilizzazione su di esso disposti. Allo scopo di evitare frequenti rifacimenti, particolarmente onerosi sul ponte, tutta la pavimentazione, compresi i giunti e le altre opere accessorie, deve essere eseguita con materiali della migliore qualità e con la massima cura esecutiva.

Controllo dei requisiti di accettazione

Le caratteristiche più importanti per una struttura stradale possono essere riassunte nei seguenti punti:

- elevata capacità portante
- buona stabilità
- bassa permeabilità all'acqua
- rispetto della plano-altimetria di progetto
- buone caratteristiche di micro e macrotessitura

L'Appaltatore ha l'obbligo di fare eseguire prove sperimentali sui campioni di aggregato e di legante per la relativa accettazione.

L'Appaltatore è poi tenuto a presentare, con congruo anticipo rispetto all'inizio dei lavori e per ogni cantiere di produzione, la composizione delle miscele che intende adottare; ogni composizione proposta dovrà essere corredata da una completa documentazione degli studi effettuati in laboratorio, attraverso i quali l'Appaltatore ha ricavato la ricetta ottimale.

La Direzione dei Lavori si riserva di approvare i risultati prodotti o di fare eseguire nuove ricerche. L'approvazione non ridurrà comunque la responsabilità dell'Appaltatore, relativa al raggiungimento dei requisiti finali dei conglomerati in opera.

Dopo che la Direzione dei Lavori ha accettato la composizione proposta, l'Appaltatore dovrà ad essa attenersi rigorosamente comprovandone l'osservanza con controlli giornalieri. Non saranno ammesse variazioni del contenuto di aggregato grosso superiore a \pm 5% e di sabbia superiore \pm 3% sulla percentuale corrispondente alla curva granulometrica prescelta, e di \pm 1,5% sulla percentuale di additivo.

Per la quantità di bitume non sarà tollerato uno scostamento dalla percentuale stabilita di \pm 0,3%.

Tali valori dovranno essere verificati con le prove sul conglomerato bituminoso prelevato all'impianto come pure dall'esame delle carote prelevate in sito.

In corso d'opera ed in ogni fase delle lavorazioni la Direzione dei Lavori effettuerà, a sua discrezione, tutte le verifiche, prove e controlli atti ad accertare la rispondenza qualitativa e quantitativa dei lavori alle prescrizioni contrattuali.

Art. 2.2 PREPARAZIONE DEL SOTTOFONDO

Il terreno interessato dalla costruzione del corpo stradale che dovrà sopportare direttamente o la sovrastruttura o i rilevati, verrà preparato asportando il terreno vegetale per tutta la superficie e per la profondità fissata dal progetto o stabilita dalla Direzione dei Lavori.

I piani di posa dovranno anche essere liberati da qualsiasi materiale di altra natura vegetale, quali radici, cespugli, alberi.

Per l'accertamento del raggiungimento delle caratteristiche particolari dei sottofondi qui appresso stabilite, agli effetti soprattutto del grado di costipamento e dell'umidità in posto, l'Appaltatore, indipendentemente dai controlli che verranno eseguiti dalla Direzione dei Lavori, dovrà provvedere a tutte le prove e determinazioni necessarie.

A tale scopo dovrà quindi, a sue cure e spese, installare in cantiere un laboratorio con le occorrenti attrezzature. Le determinazioni necessarie per la caratterizzazione dei terreni, ai fini della loro possibilità d'impiego e delle relative modalità, verranno preventivamente fatte eseguire dalla Direzione dei Lavori presso un laboratorio pubblico, cioè uno dei seguenti laboratori: quelli delle Università, delle Ferrovie dello Stato o presso il laboratorio dell'A.N.A.S.

Rimosso il terreno costituente lo strato vegetale, estirpate le radici fino ad un metro di profondità sotto il piano di posa e riempite le buche così costituite si procederà, in ogni caso, ai seguenti controlli:

- a) determinazione del peso specifico apparente del secco del terreno in sito e di quello massimo determinato in laboratorio;
- b) determinazione dell'umidità in sito in caso di presenza di terre sabbiose, ghiaiose o limose;
- c) determinazione dell'altezza massima delle acque sotterranee nel caso di terre limose.

Art. 2.3 COSTIPAMENTO DEL TERRENO IN SITO

- **A)** Se sul terreno deve essere appoggiata la sovrastruttura direttamente o con l'interposizione di un rilevato di altezza minore di 50 cm, si seguiranno le seguenti norme:
 - a) per le terre sabbiose o ghiaiose si dovrà provvedere al costipamento del terreno per uno spessore di almeno 25 cm con adatto macchinario fino ad ottenere un peso specifico apparente del secco in sito, pari almeno al 95% di quello massimo ottenuto in laboratorio;
 - b) per le terre limose, in assenza d'acqua, si procederà come al precedente punto a);
 - c) per le terre argillose si provvederà alla stabilizzazione del terreno in sito, mescolando ad esso altro idoneo, in modo da ottenere un conglomerato a legante naturale, compatto ed impermeabile, dello spessore che verrà indicato volta per volta e costipato fino ad ottenere un peso specifico apparente del secco pari al 95% del massimo ottenuto in laboratorio. Nel caso in cui le condizioni idrauliche siano particolarmente cattive, il provvedimento di cui sopra sarà integrato con opportune opere di drenaggio.
- **B)** Se il terreno deve sopportare un rilevato di altezza maggiore di 0,50 m:
 - a) per terre sabbiose o ghiaiose si procederà al costipamento del terreno con adatto macchinario per uno spessore di almeno 25 cm, fino ad ottenere un peso specifico apparente del secco pari all'85% del massimo ottenuto in laboratorio per rilevati aventi un'altezza da 0,50 m a 3 m, e pari all'80% per rilevati aventi un'altezza superiore a 3 m;
 - b) per le terre limose, in assenza di acqua, si procederà come indicato al punto a);
 - c) per le terre argillose si procederà analogamente a quanto indicato al punto c) del Capo A).
 In presenza di terre torbose si procederà in ogni caso alla sostituzione del terreno con altro tipo sabbiosoghiaioso per uno spessore tale da garantire una sufficiente ripartizione del carico.

Art. 2.4 MODIFICAZIONE DELLA UMIDITA' IN SITO

L'umidità di costipamento non dovrà mai essere maggiore del limite di ritiro diminuito del 5%; nel caso che l'umidità del terreno in sito sia maggiore di questo valore, occorrerà diminuire questo valore dell'umidità in loco, mescolando alla terra, per lo spessore che verrà indicato dalla Direzione dei Lavori, altro materiale idoneo asciutto o lasciando asciugare all'aria previa disgregazione.

Qualora operando nel modo suddetto l'umidità all'atto del costipamento, pari a quella del limite del ritiro diminuito del 5%, risultasse inferiore a quella ottimale ottenuta in laboratorio, dovrà raggiungersi il prescritto peso specifico apparente aumentando il lavoro meccanico di costipamento.

Art. 2.5 FONDAZIONI

La fondazione sarà costituita dalla miscela del tipo approvato dalla Direzione dei Lavori e dovrà essere stesa in strati successivi dello spessore stabilito dalla Direzione dei Lavori in relazione alla capacità costipante delle attrezzature usate. Il sistema di lavorazione e miscelazione del materiale potrà essere modificato di volta in volta dalla Direzione dei Lavori in relazione al sistema ed al tipo di attrezzatura da laboratorio usata ed in relazione al sistema ed al tipo di attrezzatura di cantiere impiegata. Durante il periodo di costipamento dovranno essere integrate le quantità di acqua che evaporano per vento, sole, calore, ecc.

Il materiale da usarsi dovrà corrispondere ai requisiti di cui al punto "*Prescrizioni per la Costruzione di Strade con Sovrastruttura in Terra Stabilizzata*" e dovrà essere prelevato, ove sia possibile, sul posto.

L'acqua da impiegare dovrà essere esente da materie organiche e da sostanze nocive.

Si darà inizio ai lavori soltanto quando le condizioni di umidità siano tali da non produrre detrimenti alla qualità dello strato stabilizzante. La costruzione sarà sospesa quando la temperatura sia inferiore a 3°C.

Qualsiasi area che risultasse danneggiata, per effetto del gelo, della temperatura o di altre condizioni di umidità durante qualsiasi fase della costruzione, dovrà essere completamente scarificata, rimiscelata e costipata in conformità alle prescrizioni della Direzione dei Lavori, senza che questa abbia a riconoscere alcun particolare compenso aggiuntivo.

La superficie di ciascun strato dovrà essere rifinita secondo le inclinazioni, le livellette e le curvature previste dal progetto e dovrà risultare liscia e libera da buche e irregolarità.

Art. 2.6 OPERAZIONI PRELIMINARI

L'area sulla quale dovranno costruirsi le fondazioni dovrà essere sistemata come indicato nell'articolo "*Preparazione del Sottofondo*".

Le buche lasciate nel terreno di impianto dopo l'estirpazione delle radici saranno riempite con cura ed il materiale di riempimento dovrà essere costipato fino a raggiungere una densità uguale a quella delle zone adiacenti.

Art. 2.7 STUDI PRELIMINARI - PROVE DI LABORATORIO IN SITO

L'Appaltatore indicherà alla Direzione dei Lavori i materiali terrosi che essa ritiene più idonei al particolare impiego, sia per componenti che per granulometria, scegliendoli tra quelli del tipo sabbioso-ghiaioso con moderato tenore di limo ed argilla.

La Direzione dei Lavori, in seguito all'esito delle prove di laboratorio su detti materiali o su altri di propria scelta, designerà la provenienza e la composizione del terreno da approvvigionare.

Per l'accettazione del terreno saranno richiesti i risultati delle prove di bagno-asciuga e, ove le condizioni climatiche lo richiedano, di congelamento ripetute.

Le prove preliminari che si richiedono sono le seguenti:

- 1) prove per la determinazione delle caratteristiche fisiche dell'aggregato (analisi granulometriche);
- 2) prove per la determinazione della densità massima e dell'umidità ottima del terreno;

- 3) prove per la determinazione dell'umidità e della densità massima della miscela terra-legante;
- 4) prove per la determinazione delle caratteristiche di accettazione del cemento secondo le norme vigenti;
- 5) prove ripetute di bagno-asciuga e del congelamento per la determinazione del comportamento della miscela all'azione degli agenti atmosferici.

L'Appaltatore durante l'esecuzione dei lavori provvederà ad eseguire a proprie cure e spese, presso il laboratorio di cantiere e presso laboratori ufficiali, periodiche prove di controllo e tutte quelle che la Direzione dei Lavori riterrà opportune.

Le caratteristiche granulometriche cui dovrà rispondere la miscela di stabilizzazione saranno determinate periodicamente, mediante prove di laboratorio del terreno da impiegare, ed approvate dalla Direzione dei Lavori.

Tutti i prodotti e/o materiali impiegati, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 2.8 ATTREZZATURA DI CANTIERE

L'Appaltatore dovrà mettere a disposizione della Direzione dei Lavori un laboratorio da campo opportunamente attrezzato per eseguire almeno le seguenti prove:

- 1) determinazione delle caratteristiche di costipamento;
- 2) determinazione del limite liquido;
- 3) determinazione del limite plastico;
- 4) determinazione del limite di ritiro;
- 5) determinazione delle caratteristiche granulometriche;
- 6) determinazione dell'umidità e densità in posto;
- 7) determinazione del C.B.R. in posto;
- 8) determinazione dell'indice di polverizzazione del materiale.

L'Appaltatore è tenuto a mettere la Direzione dei Lavori in condizione di poter eseguire le altre prove su terre presso il proprio laboratorio centrale o presso il laboratorio a cui l'Appaltatore affida l'esecuzione delle analisi.

I macchinari che l'Appaltatore dovrà possedere come propria attrezzatura di cantiere dovranno rispondere agli usi a cui sono destinati e consisteranno:

- a) in motolivellatori che dovranno essere semoventi, forniti di pneumatici ed avere una larghezza base ruote non minore di 4 m;
- b) in attrezzatura spruzzante costituita da camions distributori a pressione o con altra attrezzatura adatta alla distribuzione dell'acqua a mezzo di barre spruzzatrici in modo uniforme e in quantità variabile e controllabile;
- c) in mezzi costipatori costituiti da:
 - rulli a piede di montone e semplice o a doppio tamburo del tipo adatto per costipare il materiale che viene impiegato. Dovranno poter essere zavorrati fino a raggiungere la pressione unitaria richiesta dalla Direzione dei Lavori;
 - carrelli pigiatori gommati muniti di gomme lisce trainati da un trattore a ruote gommate di adeguata potenza trainante oppure carrelli pigiatori gommati semoventi aventi possibilità di procedere nei due sensi con inversione di marcia;
 - rulli vibranti capaci di sviluppare un carico statico variabile, da un minimo di 300 kg fino a 1300 kg circa, ed una energia dinamica sinusoidale con vettore forza del peso prestabilito di volta in volta dalla Direzione dei Lavori;
 - 4) rulli compressori lisci a tre ruote, del peso che verrà stabilito di volta in volta dalla Direzione dei Lavori;
 - 5) distributori meccanici regolabili e capaci di distribuire uniformemente i materiali in quantitativi controllati per m² di superficie;

6) attrezzatura idonea per la miscelazione, come: scarificatori, aratri a dischi, erpici o macchinari semoventi a singola o a doppia passata, motograders.

Tutta l'attrezzatura di cantiere deve essere approvata dalla Direzione dei Lavori prima di essere impiegata.

Tutti i prodotti e/o materiali impiegati, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 2.9 RETE A MAGLIE SALDATE IN ACCIAIO PER ARMATURE DI FONDAZIONI O PAVIMENTAZIONI IN CONGLOMERATO CEMENTIZIO

A 5 cm dal piano finito della pavimentazione o fondazione del conglomerato cementizio, sarà fornita e posta in opera una rete metallica avente le caratteristiche appresso indicate.

Lo spessore dei singoli fili nonché le dimensioni delle maglie verranno fissate dalla Direzione dei Lavori. Per la dimensione delle maglie, le quali potranno essere quadrate o rettangolari, si fissano i limiti da 75 mm a 300 mm.

La rete sarà costituita da barre di acciaio ad alta resistenza conformi ai punti 11.3.1 e 11.3.2 del D.M. 17 gennaio 2018.

Per quanto non espressamente contemplato nel presente articolo, le modalità esecutive dovranno essere conformi alle indicazioni della normativa consolidata.

La rete verrà contabilizzata e liquidata in base al peso effettivo del materiale impiegato. Nel prezzo relativo di elenco sono compresi tutti gli oneri di fornitura del materiale, l'esecuzione della rete, la sua posa in opera, ganci, trasporti, sfridi e tutto quanto altro occorra.

Art. 2.10 EVENTUALI DELIMITAZIONI E PROTEZIONE DEI MARGINI DEI TRATTAMENTI BITUMINOSI

Nella prima esecuzione dei trattamenti protetti a base di leganti, quando la Direzione dei Lavori lo richieda e ciò sia contemplato nel prezzo di elenco, l'Appaltatore dovrà provvedere alla loro delimitazione lungo i margini con un bordo di pietrischetto bituminato della sezione di 5 X 8 cm.

A tale scopo, prima di effettuare la pulitura della superficie della massicciata cilindrata che precede la prima applicazione di leganti, verrà, col piccone, praticato un solco longitudinale, lungo il margine della massicciata stessa, della profondità di circa 5 cm e della larghezza di circa 8 cm.

Ultimata la ripulitura ed asportati i materiali che avessero eventualmente ostruito il solco, si delimiterà con quest'ultimo, in aderenza al margine della massicciata, il vano che dovrà riempirsi con pietrischetto bituminato, mediante regoli aventi la faccia minore verticale e sufficientemente sporgenti dal suolo, i quali saranno esattamente collocati in modo da profilare nettamente il bordo interno verso l'asse stradale.

Riempito quindi il vano con pietrischetto bituminato, si procederà ad un'accurata battitura di quest'ultimo mediante sottili pestelli metallici di adatta forma, configurando nettamente la superficie superiore del cordolo all'altezza di quella della contigua massicciata.

Si procederà dopo al previsto trattamento di prima applicazione, coprendo anche la superficie del cordolo, dopo di che, con le riportate norme relative ai vari trattamenti, si provvederà allo spargimento di graniglia ed alla successiva bitumatura.

La rimozione dei regoli di contenimento del bordo non verrà fatta se prima quest'ultimo non abbia raggiunto una sufficiente consistenza tale da evitarne la deformazione.

Prima dell'esecuzione, a rincalzo del bordo verso l'esterno, verrà adoperato il materiale detritico proveniente dall'apertura del solco.

Il pietrischetto da impiegarsi per il bordo sarà preparato preferibilmente a caldo: è ammesso, peraltro, anche l'impiego di materiale preparato con emulsioni bituminose, purché la preparazione sia fatta con qualche giorno di precedenza e con le debite cure, in modo che i singoli elementi del pietrischetto risultino bene avviluppati da bitume già indurito e che la massa sia del tutto esente da materie estranee e da impurità.

Art. 2.11 TRATTAMENTI SUPERFICIALI DI ATTACCO ED ANCORAGGIO

Per mano d'attacco si intende quell'applicazione di legante o emulsione bituminosa su uno strato di conglomerato eseguita prima della stesa dello strato sovrastante. Essa ha il triplice scopo di garantire la perfetta continuità tra gli strati della pavimentazione, la loro mutua adesione e l'impermeabilità della strato sottostante, aspetti che rivestono fondamentale importanza per lo sviluppo di adeguate prestazioni in esercizio.

Relativamente alla continuità tra gli strati, per rispondere adeguatamente ai carichi verticali indotti dal traffico veicolare, una pavimentazione stradale deve essere realizzata in modo da reagire alle sollecitazioni in maniera solidale, evitando che gli strati lavorino disgiunti gli uni dagli altri. E' fondamentale accertarsi che gli strati siano intimamente collegati tra loro, in modo tale da reagire come un unico corpo nei confronti delle sollecitazioni esterne.

Si parla invece di mano di ancoraggio quando lo strato di supporto su cui viene stesa l'emulsione prima della realizzazione di uno strato in conglomerato bituminoso è in misto granulare. La funzione principale di questa applicazione è quella di irrigidire la parte superiore dello strato non legato riempendone i vuoti e garantendo al contempo una migliore adesione per l'ancoraggio del successivo strato in conglomerato bituminoso. Proprio perché ha una funzione di "impregnazione" dello strato sottostante, essa va realizzata con un'emulsione bituminosa a rottura lenta e bassa viscosità, in modo tale che abbia tempo sufficiente per penetrare tra i granuli prima della fase di presa.

In generale, l'applicazione del legante bituminoso sulla superficie di stesa può avvenire sia tramite emulsione bituminosa che con bitume spruzzato a caldo.

Art. 2.12 STRATI DI COLLEGAMENTO (BINDER) E DI USURA

Descrizione

La parte superiore della sovrastruttura stradale sarà, in generale, costituita da un doppio strato di conglomerato bituminoso steso a caldo, e precisamente: da uno strato inferiore di collegamento (binder) e da uno strato superiore di usura, secondo quanto stabilito dalla Direzione dei Lavori.

Il conglomerato per ambedue gli strati sarà costituito da una miscela di pietrischetti, graniglie, sabbie ed additivi, secondo CNR, fascicolo IV/1953, mescolati con bitume a caldo, e verrà steso in opera mediante macchina vibrofinitrice e compattato con rulli gommati e metallici lisci.

I conglomerati durante la loro stesa non devono presentare nella loro miscela alcun tipo di elementi litoidi, anche isolati, di caratteristiche fragili o non conformi alle presenti prescrizioni del presente capitolato, in caso contrario a sua discrezione la Direzione del Lavori accetterà il materiale o provvederà ad ordinare all'Appaltatore il rifacimento degli strati non ritenuti idonei.

Materiali inerti

Per il prelevamento dei campioni destinati alle prove di controllo dei requisiti di accettazione così come per le modalità di esecuzione delle prove stesse, valgono le prescrizioni contenute nel fascicolo IV delle Norme C.N.R. 1953, con l'avvertenza che la prova per la determinazione della perdita in peso sarà fatta con il metodo Los Angeles secondo le norme del B.U. C.N.R. n° 34 (28.03.1973) anziché con il metodo Deval.

L'aggregato grosso (pietrischetti e graniglie) dovrà essere ottenuto per frantumazione ed essere ottenuto da elementi sani, duri, durevoli, approssimativamente poliedrici, con spigoli vivi a superficie ruvida, puliti ed esenti da polvere o da materiali estranei.

L'aggregato grosso sarà costituito da pietrischetti e graniglie che potranno anche essere di provenienza o natura pertografica diversa, purché alle prove appresso elencate, eseguite su campioni rispondenti alla miscela che si intende formare, risponda ai seguenti requisiti.

Per strati di collegamento

- perdita in peso alla prova Los Angeles eseguita sulle singole pezzature secondo le Norme ASTM C 131 AASHO T 96, inferiore al 25%;
 - indice dei vuoti delle singole pezzature, secondo CNR, fascicolo IV/1953, inferiore a 0.80;
 - coefficiente di imbibizione, secondo CNR, fascicolo IV/1953, inferiore a 0.015;
 - materiale non idrofilo, secondo CNR, fascicolo IV/1953.

Nel caso che si preveda di assoggettare al traffico lo strato di collegamento in periodi umidi o invernali, la perdita in peso per scuotimento sarà limitata allo 0.5%.

Per strati di usura

- perdita in peso alla prova Los Angeles eseguito sulle singole pezzature secondo le norme ASTM C 131 AASHO T 96, inferiore od uguale al 20%;
- almeno un 30% in peso del materiale dell'intera miscela deve provenire da frantumazione di rocce che presentino un coefficiente di frantumazione minore di 100 e resistenza compressione, secondo tutte le giaciture, non inferiore a 140 N/mm2, nonché resistenza all'usura minima di 0.6;
 - indice dei vuoti delle singole pezzature, secondo CNR, fascicolo IV/1953, inferiore a 0.85;
 - coefficiente di imbibizione, secondo CNR, fascicolo IV/1953 inferiore a 0.015;
 - materiale non idrofilo, secondo CNR, fascicolo IV/1953, con limitazione per la perdita in peso allo 0.5%.

In ogni caso i pietrischi e le graniglie dovranno essere costituiti da elementi sani, duri, durevoli, approssimativamente poliedrici, con spigoli vivi, a superficie ruvida, puliti ed esenti da polvere e da materiali estranei.

L'aggregato fino sarà costituito in ogni caso da sabbia naturale o di frantumazione che dovranno in particolare soddisfare ai seguenti requisiti:

- equivalente in sabbia determinato con la prova AASHO T 176 non inferiore al 55%;
- materiale non idrofilo, secondo CNR, fascicolo IV/1953 con le limitazioni indicate per l'aggregato grosso. Nel caso non fosse possibile reperire il materiale della pezzatura 2- 5 mm necessario per la prova, la stessa dovrà essere eseguita secondo le modalità della prova Riedel-Weber con concentrazione non inferiore a 6.

Gli additivi minerali (fillers) saranno costituiti da polvere di rocce preferibilmente calcaree o da cemento, calce idrata, calce idraulica, polvere di asfalto e dovranno risultare alla setacciatura per via secca interamente passanti al setaccio n. 30 ASTM e per almeno il 65% al setaccio n° 200 ASTM.

Per lo strato di usura, richiesta della Direzione dei Lavori il filler potrà essere costituito da polvere di roccia asfaltica contenente il 6-8% di bitume ed alta percentuale di asfalteni con penetrazione Dow a 25° C inferiore a 150 dmm.

Per fillers diversi da quelli sopra indicati è richiesta la preventiva approvazione della Direzione dei Lavori in base a prove e ricerche di laboratorio.

Legante

Il bitume per gli strati di collegamento e di usura dovrà essere preferibilmente di penetrazione 60-70 salvo diverso avviso della Direzione dei Lavori in relazione alle condizioni locali e stagionali e dovrà rispondere agli stessi requisiti indicati per il conglomerato bituminoso di base.

Miscele

1) Strato di collegamento (BINDER).

La miscela degli aggregati da adottarsi per lo strato di collegamento dovrà avere una composizione granulometrica contenuta nel seguente fuso:

Sorio crivolli o cotocci UNI	Miscela passante:	
Serie crivelli e setacci UNI	% totale in peso	

Crivello 25	100
Crivello 15	65 - 100
Crivello 10	50 - 80
Crivello 5	30 - 60
Crivello 2	20 - 45
Crivello 0.4	7 - 25
Crivello 0.18	5 - 15
Crivello 0.075	4 - 8

Il tenore di bitume dovrà essere compreso tra il 4.5% e il 5.5% riferito al peso totale degli aggregati.

Esso dovrà comunque essere il minimo che consenta il raggiungimento dei valori di stabilità Marshall e compattezza di seguito riportati (UNI EN 12697-34).

Il conglomerato bituminoso dovrà avere i seguenti requisiti:

- il valore della stabilità Marshall eseguita a 60°C su provini costipati con 75 colpi di maglio per faccia, dovrà non risultare inferiore a 900 kg. (950 kg. per conglomerati Confezionati con bitume mod.); inoltre il valore della rigidezza Marshall cioè il rapporto tra la stabilità misurata in kg. e lo scorrimento misurato in mm., dovrà essere superiore a 300;
- gli stessi provini per i quali viene determinata la stabilità Marshall dovranno presentare una percentuale di vuoti residui compresi fra il 3% ed il 7%.

La prova Marshall eseguita su provini che abbiano subito un periodo di immersione in acqua distillata per 15 giorni, dovrà dare un valore di stabilità non inferiore al 75% di quello precedentemente indicato.

Riguardo alle misure di stabilità e rigidezza, sia per i conglomerati bituminosi di usura che per quelli tipo Binder, valgono le stesse prescrizioni indicate per il conglomerato di base.

2) Strato di usura.

La miscela degli aggregati da adottarsi per lo strato di usura dovrà avere una composizione granulometrica contenuta nel sequente fuso:

Serie crivelli e setacci UNI	Miscela passante: % totale in peso	
Crivello 15	100	
Crivello 10	70 - 100	
Crivello 5	43 - 67	
Crivello 2	25 - 45	
Crivello 0.4	12 - 24	
Crivello 0018	7 - 15	
Crivello 0.075	6 - 11	

Il tenore di bitume dovrà essere compreso tra il 5.0% e il 6.5% riferito al peso totale degli aggregati.

Il coefficiente di riempimento con bitume dei vuoti intergranulari della miscela addensata non dovrà superare l'80%; il contenuto di bitume della miscela dovrà comunque essere il minimo che consente il raggiungimento dei valori di stabilità Marshall e compattezza di seguito riportata (UNI EN 12697-34).

Il conglomerato dovrà avere i seguenti requisiti:

a) resistenza meccanica elevatissima, cioè capacità di sopportare senza deformazioni permanenti le sollecitazioni trasmesse dalle ruote dei veicoli sia in fase dinamica che statica, anche sotto le più alte temperature estive, e sufficiente flessibilità per poter seguire sotto gli stessi carichi qualunque assestamento eventuale del

sottofondo anche a lunga scadenza; il valore della stabilità Marshall - Prova B.U. CNR n. 30 (15 marzo 1973) eseguita a 60°C su provini costipati con 75 colpi di maglio per faccia, dovrà non risultare inferiore a 1000 kg. (1050 kg. per conglomerato confezionato con bitume mod.); inoltre il valore della rigidezza Marshall, cioè il rapporto tra la stabilità misurata in kg. e lo scorrimento misurato in mm., dovrà essere superiore a 300.

La percentuale dei vuoti dei provini Marshall, sempre nelle condizioni di impiego prescelte, deve essere compresa tra il 3% e il 6%.

La prova Marshall eseguita su provini che abbiano subito un periodo di immersione in acqua distillata per 15 giorni, dovrà dare un valore di stabilità non inferiore al 75% di quello precedentemente indicato;

- b) elevatissima resistenza all'usura superficiale;
- c) sufficiente ruvidezza della superficie tale da non renderla scivolosa;
- d) grande compattezza:

il volume dei vuoti residui a rullatura terminata dovrà essere compreso tra il 4% e 8%.

Formazione e confezione degli impasti

Il conglomerato sarà confezionato mediante impianti fissi autorizzati, di idonee caratteristiche, mantenuti sempre perfettamente funzionanti in ogni loro parte.

La produzione di ciascun impianto non dovrà essere spinta oltre la sua potenzialità per garantire il perfetto essiccamento, l'uniforme riscaldamento della miscela ed una perfetta vagliatura che assicuri una idonea riclassificazione delle singole classi degli aggregati; resta pertanto escluso l'uso dell'impianto a scarico diretto.

L'impianto dovrà comunque garantire uniformità di produzione ed essere in grado di realizzare miscele del tutto rispondenti a quelle di progetto.

Il dosaggio dei componenti della miscela dovrà essere eseguito a peso mediante idonea apparecchiatura la cui efficienza dovrà essere costantemente controllata.

Ogni impianto dovrà assicurare il riscaldamento del bitume alla temperatura richiesta ed a viscosità uniforme fino al momento della miscelazione nonché il perfetto dosaggio sia del bitume che dell'additivo.

La zona destinata all'ammannimento degli inerti sarà preventivamente, e convenientemente sistemata per annullare la presenza di sostanze argillose e ristagni di acqua che possano compromettere la pulizia degli aggregati.

Inoltre i cumuli delle diverse classi dovranno essere nettamente separati tra di loro e l'operazione di rifornimento nei predosatori eseguita con la massima cura.

Si farà uso di almeno 4 classi di aggregati con predosatori in numero corrispondente alle classi impiegate.

Il tempo di miscelazione effettiva, che, con i limiti di temperatura indicati per il legante e gli aggregati, non dovrà essere inferiore a 25 secondi.

La temperatura degli aggregati all'atto della mescolazione dovrà essere compresa tra 150°C e 170°C, e quella del legante tra 150°C e 180°C, salvo diverse disposizioni della Direzione dei Lavori in rapporto al tipo di bitume impiegato e alle indicazioni tecniche del fornitore.

Per la verifica delle suddette temperature, gli essiccatori, le caldaie e le tramogge degli impianti dovranno essere muniti di termometri fissi perfettamente funzionanti e periodicamente tarati.

L'umidità degli aggregati all'uscita dell'essiccatore non dovrà di norma superare lo 0,5%.

Attivanti l'adesione

Nella confezione dei conglomerati bituminosi dei vari strati potranno essere impiegate speciali sostanze chimiche attivanti l'adesione bitume-aggregato ("dopes" di adesività).

Esse saranno impiegate negli strati di base e di collegamento, mentre per quello di usura lo saranno ad esclusivo giudizio della Direzione dei Lavori quando la zona di impiego del conglomerato, in relazione alla sua posizione geografica rispetto agli impianti di produzione, è tanto distante da non assicurare, in relazione al tempo di trasporto del materiale, la temperatura di 130°C richiesta all'atto della stesa.

Si avrà cura di scegliere tra i prodotti in commercio quello che sulla base di prove comparative effettuate avrà dato i migliori risultati, e che conservi le proprie caratteristiche chimiche anche se sottoposto a temperature elevate e prolungate.

Il dosaggio sarà variabile in funzione del tipo di prodotto tra lo 0.3% e lo 0.6% rispetto al peso del bitume. Tutte le scelte e le procedure di utilizzo dovranno essere approvate preventivamente dalla Direzione dei Lavori.

Tutti i prodotti e/o materiali impiegati, qualora possano essere dotati di marcatura CE secondo la normativa tecnica vigente, dovranno essere muniti di tale marchio.

Art. 2.13 COMPATTAZIONE DEI CONGLOMERATI BITUMINOSI

La compattazione è il trattamento necessario per ridurre il contenuto di vuoti nella miscela di conglomerato bituminoso e conferire migliori capacità portanti al manto stradale. L'adesione tra strisciate contigue e tra strati adiacenti deve creare una struttura compatta senza soluzione di continuità, una migliore distribuzione dei carichi e un incremento della vita utile della strada.

Il grado di compattazione a cui rendere soggetto un conglomerato bituminoso dipende dalla sua compattabilità ai sensi della norma UNI EN 12697-10, o proprietà quali:

- tipo di miscela;
- temperatura della miscela;
- curva granulometrica;
- tipo e quantità di legante;
- condizioni meteo-climatiche durante la posa (es. temperatura, vento);
- spessore dello strato.

La compattazione potrà essere **statica** (se avviene esercitando sullo strato il solo peso proprio del rullo - forza verticale) o **dinamica** (se avviene con masse eccentriche che sfruttano vibrazioni e/o oscillazioni con impulsi verticali e orizzontali. La categoria di rulli dinamici più frequentemente utilizzata è quella che opera tramite vibrazioni).

L'ampiezza è la misura dello spostamento del tamburo del rullo vibrante/oscillante dalla posizione iniziale, durante la compattazione. In caso di rulli a vibrazione, il tamburo si sposta verso l'alto e verso il basso. In caso di rullo ad oscillazione, l'ampiezza indica di quanto si sposta il tamburo avanti e indietro.

In linea generale l'ampiezza necessaria è direttamente proporzionale allo spessore dello strato da compattare, per evitare fenomeni di sovracompattazione che possono ridurre anziché aumentare l'addensamento dello strato.

Regole di base per la compattazione e stesa dei conglomerati bituminosi

La preparazione e l'esecuzione della compattazione con il rullo deve essere sempre considerata in rapporto al tipo di miscela, alle condizioni del cantiere ed alle condizioni meteorologiche.

Il numero necessario di passate dipende dai seguenti fattori:

- tipo e peso dei rulli;
- velocità del rullo;
- spessore di stesa;
- temperatura della miscela/condizioni atmosferiche;
- compattabilità della miscela;
- pre-compattazione tramite vibrofinitrice;
- stabilità del sottofondo.

Non è possibile fornire un dato numerico assoluto relativo al numero di passate senza conoscere questi parametri.

La velocità tipica del rullo per tutti i tipi di conglomerato bituminoso è compresa tra i 3 e i 6 km/h. In caso di velocità troppo elevata vi è il rischio di formazione di ondulazioni, specialmente utilizzando la vibrazione (effetto corrugato). Viceversa, in caso di velocità troppo bassa vi è un elevato rischio di formazione di ondulazioni a causa del movimento dello sterzo e di deformazione durante la compattazione per vibrazione.

La temperatura ideale per la compattazione del conglomerato è compresa tra 100 e 140 °C.

In questo range la maggior parte delle miscele bituminose può essere compattata tramite vibrazione e oscillazione. A temperature più elevate, essendo il materiale più molle e lavorabile si potrà utilizzare la compattazione dinamica con cautela, per evitare spostamento o segregazione del materiale. Pertanto, in certe circostanze (es. con conglomerato bituminoso avente bassa stabilità) e in presenza di temperature superiori a 140°C potrà essere imposta l'esecuzione della compattazione in modo statico. Viceversa, a temperature inferiori a 100°C (quando il materiale risulta molto viscoso e meno lavorabile), la compattazione potrà essere imposta solo per oscillazione o in modo statico, per evitare la frantumazione degli aggregati.

È comunque sempre raccomandabile che la compattazione sia completata a temperature comprese tra 80 e 100 °C.

In proposito, l'appaltatore dovrà osservare scrupolosamente le eventuali indicazioni di progetto e/o della Direzione lavori.

Modalità di compattazione in funzione dello strato di conglomerato

	Base	Binder	Usura	Drenante	Microtappeto
Rullo	Rulli pesanti	Rulli medi	Rulli medi	Rulli leggeri e medi	Rulli medi
Ampiezza	Iniziare con ampiezza elevata	Ampiezza elevata	Bassa ampiezza	Bassa ampiezza	Nessuna
Passate	n. da medio a elevato di passate	n. medio di passate	n. medio di passate	n. medio-basso di passate	n. basso di passate
Compattazione	Vibrazione e oscillazione	Vibrazione e oscillazione	Vibrazione e oscillazione	Statica o vibrazione	Solo per oscillazione o statica
Note particolari	In caso di conglomerato a bassa stabilità, compattare staticamente le prime due passate.	Materiale sensibile allo spostamento. Evitare basse velocità. Evitare temperature eccessive. In caso di conglomerato a bassa stabilità, compattare staticamente nelle prime due passate.	conglomerato a bassa stabilità, compattare	Evitare temperature eccessive, per	•

Art. 2.14 SCARIFICAZIONE DI PAVIMENTAZIONI ESISTENTI

Per i tratti di strada già pavimentati sui quali dovrà procedersi a ricarichi o risagomature, l'impresa dovrà dapprima ripulire accuratamente il piano viabile, provvedendo poi alla scarificazione della sovrastruttura esistente adoperando, all'uopo, apposito scarificatore opportunamente trainato e guidato.

La scarificazione sarà spinta fino alla profondità ritenuta necessaria dalla Direzione dei Lavori, provvedendo poi alla successiva vagliatura ed eventuale raccolta in cumuli del materiale riutilizzabile per l'impiego a norma della UNI/TS 11688 e del d.m. 69/2018, su aree di deposito procurate a cura e spese dell'Appaltatore.

FRESATURA DI STRATI IN CONGLOMERATO BITUMINOSO CON IDONEE ATTREZZATURE

La fresatura della sovrastruttura per la parte legata a bitume per l'intero spessore o parte di esso dovrà essere effettuata con idonee attrezzature, munite di frese a tamburo, funzionanti a freddo, munite di nastro caricatore per il carico del materiale di risulta.

Sarà facoltà della Direzione dei Lavori accettare eccezionalmente l'impiego di attrezzature tradizionali quali ripper, demolitori, escavatori ecc.

Le attrezzature tutte dovranno essere perfettamente efficienti e funzionanti e di caratteristiche meccaniche, dimensioni e funzionamento approvato preventivamente dalla Direzione dei Lavori.

La superficie del cavo dovrà risultare perfettamente regolare in tutti i punti, priva di residui di strati non completamente fresati che possano compromettere l'aderenza delle nuove stese da porre in opera. L'Impresa si dovrà scrupolosamente attenere agli spessori di demolizione stabiliti dalla Direzione dei Lavori.

Qualora questi dovessero risultare inadeguati e comunque diversi in difetto o in eccesso rispetto all'ordinativo di lavoro, l'impresa è tenuta a darne immediatamente comunicazione al Direttore dei Lavori o ad un suo incaricato che potranno autorizzare la modifica delle quote di fresatura.

Lo spessore della fresatura dovrà essere mantenuto costante in tutti i punti e sarà valutato mediando l'altezza delle due pareti laterali con quella della parte centrale del cavo.

La pulizia del piano di scarifica, nel caso di fresature corticali o subcorticali dovrà essere eseguita con attrezzature munite di spazzole rotanti e/o dispositivo aspirante o simili in grado di dare un piano perfettamente pulito.

Le pareti dei tagli longitudinali dovranno risultare perfettamente verticali e con andamento longitudinale rettilineo e privo di sgretolature.

Sia il piano fresato che le pareti dovranno, prima della posa in opera dei nuovi strati, risultare perfettamente puliti, asciutti e uniformemente rivestiti dalla mano di attacco in legante bituminoso.

La fresatura sarà spinta fino alla profondità ritenuta necessaria dalla Direzione dei Lavori, provvedendo poi alla successiva vagliatura ed eventuale raccolta in cumuli del materiale riutilizzabile per l'impiego a norma della UNI/TS 11688 e del d.m. 69/2018, su aree di deposito procurate a cura e spese dell'Appaltatore.

Art. 2.16 ACCIOTTOLATI E SELCIATI

Acciottolati

I ciottoli saranno disposti su di un letto di sabbia alto da 10 a 15 cm, ovvero su di un letto di malta idraulica di conveniente spessore sovrapposto ad uno strato di rena compressa alto da 8 a 10 mm.

I ciottoli dovranno essere scelti di dimensioni il più possibile uniformi e disposti di punta, a contatto fra di loro, con la faccia più piana rivolta superiormente, accertandosi di metterli a contatto.

A lavoro finito, i ciottoli dovranno presentare una superficie uniforme secondo i profili e le pendenze volute, dopo che siano stati debitamente consolidati battendoli con mazzapicchio.

Selciati

I selciati dovranno essere formati con pietre squadrate e lavorate al martello nella faccia vista e nella faccia di combaciamento.

Si dovrà dapprima spianare il suolo e costiparlo con la mazzeranga, riducendolo alla configurazione voluta, poi verrà steso uno strato di sabbia dell'altezza di 10 cm e su questo verranno conficcate di punta le pietre, dopo avere stabilito le guide occorrenti.

Fatto il selciato, vi verrà disteso sopra uno strato di sabbia dell'altezza di 3 cm e quindi si procederà alla battitura con mazzeranga, innaffiando di tratto in tratto la superficie, la quale dovrà riuscire perfettamente regolare e secondo i profili descritti.

Nell'eseguire i selciati si dovrà avere l'avvertenza di collocare i prismi di pietra in guisa da far risalire la malta nelle connessure.

Per assicurare poi meglio il riempimento delle connessure stesse, si dovrà versare sul selciato altra malta stemperata con acqua e ridotta allo stato liquido.

Nei selciati a secco abbeverati con malta, dopo avere posato i prismi di pietra sullo strato di sabbia dell'altezza di 10 cm di cui sopra, conficcandoli a forza con apposito martello, si dovrà versare sopra un beverone di malta stemperata con acqua e ridotta allo stato liquido, e procedere infine alla battitura con la mazzeranga, spargendo di tratto in tratto altra malta liquida fino a che la superficie sia ridotta perfettamente regolare e secondo i profili stabiliti.

Art. 2.17 PARACARRI-INDICATORI CHILOMETRICI TERMINI DI CONFINE IN PIETRA

I paracarri, gli indicatori chilometrici ed i termini di confine in pietra, della forma e dimensioni indicate nei tipi allegati al contratto, per la parte fuori terra, saranno lavorati a grana ordinaria secondo le prescrizioni di cui all'articolo "*Pietra da taglio*".

Il loro collocamento in opera avrà luogo entro fosse di convenienti dimensioni, sopra un letto di ghiaia o di sabbia di altezza di 10 cm e si assicureranno nella posizione prescritta riempiendo i vani laterali contro le pareti della fossa con grossa ghiaia, ciottoli, o rottami di pietre fortemente battuti.

Art. 2.18 SEMINAGIONI E PIANTAGIONI

Per le seminagioni sulle falde dei rilevati si impiegheranno, secondo la diversa natura del suolo e le istruzioni che saranno date dalla Direzione dei Lavori, semi di erba medica, sulla o altre.

Quando la seminagione si dovesse fare contemporaneamente alla formazione delle scarpate, si spargerà la semente prima che lo strato superiore di terra vegetale abbia raggiunto la prescritta altezza. Nei casi in cui il terreno fosse già consolidato, si farà passare un rastrello a punte di ferro sulle scarpate parallelamente al ciglio della strada e vi si spargerà quindi la semente, procurando di coprirla bene all'atto dello spianamento della terra.

L'Appaltatore dovrà riseminare a sue spese le parti ove l'erba non avesse germogliato.

Per le piantagioni sulle scarpate o sulle banchine si impiegheranno piantine di acacia o alianto, con preferenza a quest'ultima per la sua idoneità a produrre cellulosa, ovvero ad impiantare canneti (oriundo).

Tali piantagioni verranno eseguite a stagione opportuna e con tutte le regole suggerite dall'arte, per conseguire una rigogliosa vegetazione, restando I'Appaltatore obbligato di curarne la coltivazione e, all'occorrenza, l'innaffiamento sino al completo attecchimento.

Le piantine dovranno essere disposte a filari in modo che ne ricadano quattro per ogni metro quadrato di superficie.

Quelle che non attecchissero, o che dopo attecchite venissero a seccare, dovranno essere sostituite dall'Appaltatore a proprie spese in modo che all'atto del collaudo risultino tutte in piena vegetazione.

Le alberature stradali dovranno essere effettuate in modo da non pregiudicare eventuali allargamenti della sede stradale. Dovranno essere eseguite previa preparazione di buche delle dimensioni minime di metri $0.80 \times 0.80 \times 0.80$ riempite di buona terra, se del caso drenate, ed opportunamente concimate.

Le piante verranno affidate a robusti tutori a cui saranno legate con rafia.

Art. 2.19 RIVESTIMENTO E CIGLIATURE CON ZOLLE E SEMINAGIONI

Tanto per le inzollature che per le seminagioni si dovranno preparare preventivamente le superfici da trattare riportando in corrispondenza alle stesse uno strato uniforme di buona terra vegetale, facendolo bene aderire al terreno sottostante, esente da radici, da erbe infestanti e da cotiche erbose, dello spessore di almeno 20 cm.

Per la inzollatura delle scarpate da eseguire dove sarà ordinato dalla Direzione dei Lavori si useranno, ove possibile, zolle da 20 a 25 cm e di almeno 5 cm di spessore, disposte a connessure alternate, zolle provenienti dagli scoticamenti generali eseguiti per gli scavi o per la preparazione del terreno, purché le zolle siano tuttora vegetanti.

Le zolle saranno assestate battendole col rovescio del badile, in modo da farle bene aderire al terreno.

Per le seminagioni su scarpate si impiegheranno di regola semi di erba medica in quantitativi corrispondenti ad almeno 50 kg per ettaro o stoloni di gramigna.

Sulle superfici piane potrà essere ordinata anche la seminagione di loietto, in quantitativi corrispondenti ad almeno 200 kg di semi per ettaro.

In ogni caso la seminagione deve essere rullata e rastrellata in modo che i semi e gli stoloni di gramigna abbiano a risultare sicuramente coperti da uno strato di terra di spessore maggiore (2-3 cm) nel caso di gramigna.

Le seminagioni saranno mantenute umide, dopo la loro ultimazione, mediante innaffiature, in modo da conservare e aiutare la vegetazione.

La seminagione sarà eseguita a stagione propizia.

Art. 2.20 LAVORI IN FERRO

Il ferro e l'acciaio dolce delle qualità prescritte all'articolo "*Qualità e Provenienza dei Materiali*" dovranno essere lavorati diligentemente, con maestria, regolarità di forme, precisione di dimensione, e con particolare attenzione nelle saldature e bullonature. Saranno rigorosamente rifiutati tutti quei pezzi che presentassero il più leggero indizio d'imperfezione.

Per le ferramenta di qualche rilievo, I'Impresa dovrà preparare e presentare alla Direzione dei Lavori un campione, il quale, dopo approvato dalla Direzione dei Lavori stessa, dovrà servire da modello per tutta la provvista.

Per tutti i lavori in ferro, salvo contrarie disposizioni della Direzione dei Lavori, dovrà essere eseguita la coloritura a due mani di minio e a due mani successive ad olio di lino cotto con biacca e tinta a scelta.

Per i ferri da impiegare nella costruzione di opere in cemento armato vengono richiamate le norme contenute nel d.P.R. 380/2001 e s.m.i., e nel d.m. 17 gennaio 2018, avvertendo che la lavorazione dovrà essere fatta in modo che l'armatura risulti esattamente corrispondente per dimensioni ed ubicazione, alle indicazioni di progetto.

Art. 2.21 LAVORI IN LEGNAME

Tutti i legnami da impiegare in opere stabili dovranno essere lavorati con la massima cura e precisione in conformità alle prescrizioni di cui alle vigenti leggi e norme UNI e secondo le disposizioni impartite dalla Direzione dei Lavori.

Tutte le giunzioni dei legnami dovranno avere la forma e le dimensioni prescritte ed essere nette e precise in modo da poter ottenere un esatto combaciamento dei pezzi che devono essere uniti.

Non sarà tollerato alcun taglio falso, né zeppe o cunei, né qualsiasi altro mezzo di guarnitura o ripieno.

La Direzione dei Lavori potrà disporre che nelle facce di giunzione vengano interposte delle lamine di piombo o zinco, o anche cartone incatramato.

Le diverse parti componenti un'opera di legname dovranno essere fra loro collegate solidamente in tutti i punti di contatto mediante caviglie, chiodi, squadre, staffe di ferro, fasciature di reggia od altro in conformità alle prescrizioni che verranno date dalla Direzione dei Lavori.

Non si dovranno impiegare chiodi per il collegamento dei legnami senza apparecchiarne prima il conveniente foro col succhiello.

I legnami, prima della loro posa in opera e prima dell'esecuzione, se ordinata, della spalmatura di catrame o della coloritura, si dovranno congiungere in prova nei cantieri per essere esaminati ed accettati provvisoriamente dalla Direzione dei Lavori.

CAPITOLO 3

BARRIERE STRADALI ED OPERE ACCESSORIE

Art. 3.1 Premessa - Operazioni preliminari di sicurezza

Le barriere di sicurezza stradale e i dispositivi di ritenuta sono posti in opera essenzialmente al fine di fornire agli utenti della strada e agli esterni eventualmente presenti, accettabili condizioni di sicurezza in rapporto alla configurazione della strada, garantendo, entro certi limiti, il contenimento dei veicoli che dovessero tendere alla fuoriuscita dalla carreggiata stradale.

Le barriere di sicurezza stradale e gli altri dispositivi di ritenuta devono quindi essere idonei ad assorbire parte dell'energia di cui è dotato il veicolo in movimento, limitando contemporaneamente gli effetti d'urto sui passeggeri.

A seconda della loro destinazione ed ubicazione, le barriere ed altri dispositivi si dividono nei seguenti tipi:

- a) barriere centrali da spartitraffico;
- b) barriere laterali;
- c) barriere per opere d'arte, quali ponti, viadotti, sottovia, muri, ecc.;
- d) barriere o dispositivi per punti singolari, quali barriere per chiusura varchi, attenuatori d'urto per ostacoli fissi, letti di arresto o simili, terminali speciali, dispositivi per zone di approccio ad opere d'arte, dispositivi per zone di transizione e simili.

In particolare le barriere possono essere previste per:

- la delimitazione di strade
- la regolazione del traffico
- la delimitazione di aree di cantiere, di aree riservate o pericolose, di aree di parcheggio
- la delimitazione di percorsi pedonali o ciclabili, deviazioni stradali.

Nel caso di lavori di installazione in presenza di traffico occorrerà predisporre la segnaletica stradale necessaria al fine di deviare il traffico stesso e proteggere il personale dal flusso degli automezzi, nel rispetto delle norme di sicurezza.

Lo scarico degli elementi della barriera stradale dagli automezzi di trasporto potrà avvenire con una gru installata su automezzo o mediante elevatori muniti di forche.

Il personale dovrà essere munito del previsto abbigliamento ad elevata visibilità oltre che di DPI quali scarpe, guanti, occhiali ed in particolari casi di casco, cinture di sicurezza e quanto altro previsto dallo specifico sito e dalle vigenti norme in materia di sicurezza.

Le barriere stradali, di forma e dimensione indicati in progetto, saranno eseguite ovvero installate, se approvvigionate come elementi prefabbricati, lungo il tracciato progettuale o nei luoghi che la Direzione Lavori designerà.

<u>Le barriere di sicurezza potranno essere costituite dalle seguenti caratteristiche tecniche e</u> costruttive:

Art. 3.2 Barriere in calcestruzzo tipo NewJersey

La barriera di sicurezza multimpiego in calcestruzzo, denominata anche "barriera tipo NewJersey", trova largo uso in opere di delimitazione stradale e nella stragrande maggioranza dei casi si prescrive in forma prefabbricata a motivo della migliore finitura del prodotto e della presenza di certificazioni tecniche rilasciate in allegato dallo stabilimento di produzione.

Tale barriera antiurto, in qualsiasi configurazione sia progettualmente richiesta (es. spartitraffico, protezione laterale, ecc.) sarà conforme alle classi di contenimento con crash-test positivo ai sensi del D.M. 2367/2004 ed alla norma UNI EN 1317.

Il suo profilo sarà volto a minimizzare il danno ai veicoli in caso di contatto accidentale, mantenendo nel contempo la capacità di prevenzione di salti alla corsia opposta con conseguenti scontri frontali. Il risultato sarà ottenuto permettendo alle gomme del veicolo di salire sul piede a base inclinata, la cui pendenza obbligherà la ruota e quindi il veicolo ad allontanarsi dalla barriera.

Con le dovute predisposizioni il sistema risulta essere anche un valido supporto per recinzioni e cancelli, una protezione per scarpate o pendii, curve stradali o altre casistiche progettualmente indicate.

Per evitare l'alterazione della struttura costituita da calcestruzzo, con conseguenti fessurazioni e corrosione dei ferri di armatura, sarà necessaria una miscela di composizione con caratteristiche fisiche notevoli in quanto a durabilità. Tutti gli elementi dovranno essere idonei per l'utilizzo anche in ambienti montani sottoposti a cicli di gelodisgelo (dove di solito avviene l'utilizzo di sali disgelanti per le strade) e/o in ambienti marini sottoposti a contatto diretto con l'acqua di mare o ad aerosol marino.

Il calcestruzzo costituente il manufatto, dovrà essere classificabile come "ad alta prestazione e resistenza", con profilo esterno liscio e privo di alcuna imperfezione (es. fessure, vuoti, ecc.).

A prescindere dal sito e dalla natura di impiego del manufatto prefabbricato, dovranno essere impiegati:

- calcestruzzo armato vibrato
- cemento 42,5 R o superiore
- armatura in acciaio Fe B450C
- elementi con resistenza a compressione almeno da 600 Kg/cmq (UNI EN 12390-3)
- elementi con classe di esposizione (UNI EN 206): XF4 (resistente all'attacco di cicli di gelo-disgelo in condizioni
 di elevata saturazione con agente antigelo oppure acqua di mare) e/o XS3 (resistente alla corrosione da cloruri
 presenti nell'acqua marina)
- elementi con resistenza a flessione unitaria (UNI EN 196-1) da 60 N/cmq
- elementi prefabbricati in cls adatti all'utilizzo per recinzione con capacità portante (UNI EN 12839)
- cls resistente ai cicli di gelo-disgelo (UNI 7087) 0,7 daN/mq
- capacità di assorbimento d'acqua: < 6%
- prova di adesione vernice-supporto (UNI 8298-1) (Forza media = 1,0 ton).

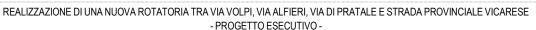
La finitura finale della barriera dovrà essere:

- colorata con vernice a base di quarzo e resine acriliche lavabile ed idrorepellente ovvero
- colorata con specifica verniciatura assorbi smog e autopulente costituita da un rivestimento protettivo trasparente, antinquinamento e antibatterico al biossido di titanio ovvero
- realizzata in ghiaino lavato e spaccato, nel caso di ambientazioni di pregio o in contesti di arredo urbano.

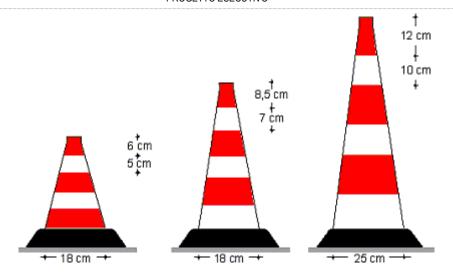
Accessori forniti in opera con il manufatto

- Gruppi piastra di collegamento in acciaio da montare alla base delle barriere o fissare solidamente al terreno con forme di piastre ad "L".
- Fori verticali passanti ove sarà possibile inserire pali tondi, pali piatti o a T di diverse dimensioni per la realizzazione di una recinzione o l'installazione di segnaletica verticale.
- Piastre in acciaio inserite nel getto e collegate all'armatura alle quali si fisseranno, con viti inox, i montanti di eventuali cancelli autoportanti.

Tutti gli elementi accessori alla barriera saranno forniti e montati in opera per assicurarne la prestazione richiesta, in particolare comprensivi di:

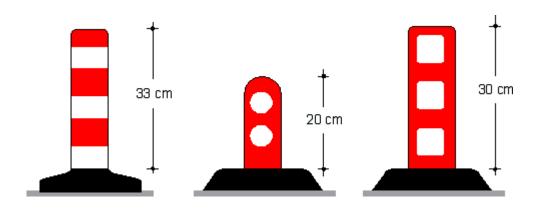

- piastre con relativi tiranti, dadi, rondelle (il tutto in acciaio zincato a caldo),
- manicotti di giunzione per barre filettate,
- eventuali compensatori di quota,
- ogni altra prestazione, fornitura ed onere incluso atto ad assicurare la classifica di normativa richiesta.

Art. 3.3 Coni e delineatori


Il **cono** può essere usato per delimitare ed evidenziare zone di lavoro o operazioni di manutenzione stradale di durata non superiore ai due giorni, per il tracciamento di segnaletica orizzontale, incanalamenti temporanei, separazione provvisoria di opposti sensi di marcia e delimitazione di ostacoli provvisori.

I coni da fornire e posare in opera dovranno essere costituiti da materiali flessibili quali gomma o plastica. Saranno di colore rosso con anelli di colore bianco retroriflettenti e le dimensioni saranno conformi alle indicazioni del Codice della Strada (art. 21 - vedi figura). Il cono dovrà avere una adeguata base di appoggio appesantita dall'interno o dall'esterno per garantirne la stabilità in ogni condizione.

La frequenza di posa sarà di solito di 12 m in rettifilo e di 5 m in curva. Nei centri abitati la frequenza sarà dimezzata, salvo diversa distanza necessaria per particolari situazioni della strada, del traffico o diversa indicazione della Direzione Lavori.



Il **delineatore flessibile** può essere usato per delimitare i sensi di marcia contigui, opposti o paralleli o per delimitare zone di lavoro stradale di durata superiore ai due giorni. I delineatori flessibili, lamellari o cilindrici, dovranno essere costituiti da materiali flessibili quali gomma o plastica; saranno di colore rosso con inserti o anelli di colore bianco retroriflettenti e le dimensioni saranno conformi alle indicazioni del Codice della Strada (art. 21 - vedi figura sotto). La base del delineatore dovrà essere incollabile o altrimenti fissata alla pavimentazione. I delineatori flessibili, se investiti dal traffico, dovranno piegarsi e riprendere la posizione verticale originale senza distaccarsi dalla pavimentazione.

La frequenza di posa sarà di solito 12 m in rettifilo e di 5 m in curva. Nei centri abitati la frequenza sarà dimezzata, salvo diversa distanza necessaria per particolari situazioni della strada, del traffico o diversa indicazione della Direzione Lavori.

Gli elementi prefabbricati per salvagenti pedonali e **delimitatori di corsia** possono essere realizzati in calcestruzzo, costituiti da sezioni componibili mediante appositi incastri. Essi devono essere impiegati solo nelle zone urbane per la creazione di isole pedonali di rifugio ovvero piattaforme di carico.

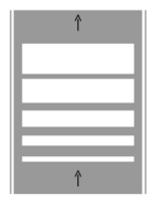
Le corsie riservate, in cui è permesso il transito solo a determinate categorie di veicoli, possono essere delimitate con elementi in rilievo tali da realizzare una cordolatura longitudinale. In tal caso, gli elementi in rilievo sostituiscono la consueta striscia gialla.

Gli elementi in rilievo, da utilizzare principalmente in ambito urbano, saranno costituiti da manufatti in materiale plastico o gomma di colore giallo. Dovranno essere dotati di un solido sistema di fissaggio alla pavimentazione in modo da impedirne lo spostamento o il distacco per effetto delle sollecitazioni derivanti dal traffico e dovranno essere posizionati in modo da consentire il deflusso delle acque piovane.

Gli elementi dovranno avere una larghezza compresa tra i 15 e 30 cm, altezza compresa (tra 5 e 15 cm) con una consistenza ed un profilo tale da consentirne il sormonto in caso di necessità. Potranno essere dotati di inserti rifrangenti o di altri sistemi catadiottrici per renderli maggiormente visibili.

I delimitatori di corsia in materiale plastico o gomma, dovranno essere omologati dal Ministero competente ai sensi dell'art. 192 del d.P.R. 16 dicembre 1992, n. 495 (Regolamento di esecuzione e di attuazione del Nuovo Codice della Strada).

I vari elementi dovranno essere possibilmente dotati di innesti maschio-femmina tali da garantire la maggior stabilità possibile durante il periodo di esercizio. Dovranno altresì essere predisposti per l'inserimento di delineatori rifrangenti verticali e flessibili quali cilindri, bandierine e simili.


Il rapporto tra base ed altezza dovrà essere compreso tra due e quattro, il profilo trasversale dovrà essere convesso e la tangente al profilo, lungo l'intero sviluppo, non dovrà formare con l'orizzontale un angolo superiore a 70°.

I vari elementi saranno posti in opera mediante fissaggio con barre filettate e/o tasselli fissati mediante malte cementizie ad espansione o fiale di materiali indurenti bicomponenti. Il costo di tali elementi di fissaggio è compreso nel prezzo e della fornitura e della posa del cordolo di che trattasi.

Art. 3.4 Rallentatori di velocità

Sulla strada, per tutta la larghezza della carreggiata, ovvero per una o più corsie nel senso di marcia interessato, si adotteranno sistemi di rallentamento della velocità costituiti da bande trasversali ad effetto ottico, acustico o vibratorio, ottenibili con opportuni mezzi di segnalamento orizzontale o trattamento della superficie della pavimentazione.

I sistemi di rallentamento ad **effetto ottico** saranno realizzati conformemente alla norma UNI/TR 11670 mediante applicazione in serie di almeno 4 strisce bianche rifrangenti aventi prestazioni minime rispondenti alla norma UNI EN 1436 con larghezza crescente nel senso di marcia e distanziamento decrescente. La prima striscia dovrà avere una larghezza di 20 cm, le successive con incremento di almeno 10 cm di larghezza (vedi figura). In merito alle proprietà dei materiali da utilizzare in tali sistemi si farà riferimento alla norma UNI EN 1871.

Sulla base delle indicazioni progettuali ovvero della Direzione Lavori, i sistemi di rallentamento ad **effetto acustico** saranno realizzati mediante irruvidimento della pavimentazione stradale ottenuta con la scarificazione o incisione superficiale della stessa o con l'applicazione di strati sottili di materiale in rilievo in aderenza, eventualmente integrato con dispositivi rifrangenti. Tali dispositivi possono anche determinare effetti vibratori di limitata intensità.

Sulle strade dove vige un limite di velocità inferiore o uguale ai 50 km/h si potranno adottare **dossi artificiali** evidenziati mediante zebrature gialle e nere parallele alla direzione di marcia, di larghezza uguale sia per i segni che per gli intervalli, visibili sia di giorno che di notte.

I dossi artificiali potranno essere posti in opera solo su strade residenziali, nei parchi pubblici e privati, nei residences, ecc.; possono essere installati in serie e devono essere presegnalati. Ne è vietato l'impiego sulle strade che costituiscono itinerari preferenziali dei veicoli normalmente impiegati per servizi di soccorso o di pronto intervento.

I dossi di cui sopra, sono costituiti da elementi in rilievo prefabbricati o da ondulazioni della pavimentazione a profilo convesso. In funzione dei limiti di velocità vigenti sulla strada interessata i dossi hanno le seguenti dimensioni:

- a) per limiti di velocità pari o inferiori a 50 km/h: larghezza >= a 60 cm e altezza <= a 3 cm;
- b) per limiti di velocità pari o inferiori a 40 km/h: larghezza >= a 90 cm e altezza <= a 5 cm;
- c) per limiti di velocità pari o inferiori a 30 km/h: larghezza >= a 120 cm e altezza <= a 7 cm.

I tipi a) e b) dovranno essere realizzati in elementi modulari in gomma o materiale plastico, il tipo c) potrà essere realizzato anche in conglomerato. Nella zona interessata dai dossi dovranno essere adottate idonee misure per l'allontanamento delle acque. Nelle installazioni in serie la distanza tra i rallentatori, deve essere compresa tra 20 e 100 m a seconda della sezione adottata.

I rallentatori di velocità prefabbricati dovranno essere fortemente ancorati alla pavimentazione, onde evitare spostamenti o distacchi dei singoli elementi o parte di essi, e dovranno essere facilmente rimovibili. La superficie superiore dei rallentatori sia prefabbricati che strutturali deve essere antisdrucciolevole.

I dispositivi rallentatori di velocità prefabbricati dovranno essere omologati per la circolazione e la sicurezza stradale; la loro installazione sarà resa possibile previa ordinanza dell'ente proprietario della strada che ne determina il tipo e la ubicazione.

CAPITOLO 4

SEGNALETICA STRADALE

Art. 4.1 Segnaletica orizzontale - Generalità

Ai sensi dell'articolo 40 del Nuovo Codice della Strada d.lgs. 30 aprile 1992 n. 285 e s.m.i. i segnali orizzontali, tracciati sulla strada, servono per regolare la circolazione, per guidare gli utenti e per fornire prescrizioni od utili indicazioni per particolari comportamenti da seguire.

I segnali orizzontali si dividono in:

- a) strisce longitudinali;
- b) strisce trasversali;
- c) attraversamenti pedonali o ciclabili;
- d) frecce direzionali;
- e) iscrizioni e simboli;
- f) strisce di delimitazione degli stalli di sosta o per la sosta riservata;
- g) isole di traffico o di presegnalamento di ostacoli entro la carreggiata;
- h) strisce di delimitazione della fermata dei veicoli in servizio di trasporto pubblico di linea;
- i) altri segnali stabiliti dal regolamento.

Le strisce longitudinali possono essere continue o discontinue. Nel regolamento (Regolamento di esecuzione e di attuazione del nuovo codice della strada - d.P.R. 16 dicembre 1992, n. 495) sono stabilite norme per le forme, le dimensioni, i colori, i simboli e le caratteristiche dei segnali stradali orizzontali, nonché le loro modalità di applicazione.

La segnaletica orizzontale da realizzare sul tracciato stradale può impiegare materiali con formulazioni e tipologie applicative diverse ma conformi alla Linea guida **UNI/TR 11670**, al fine di soddisfare precise richieste comportamentali e prestazionali.

I prodotti vernicianti da utilizzare sono distinti in tre livelli così di seguito riportati:

- a) vernici a solvente per applicazioni provvisorie o per zone poco sollecitate;
- b) termospruzzati plastici per applicazioni di routine;
- c) laminati elastoplastici o prodotti speciali per applicazioni in zone ad alta pericolosità.

Qualsiasi tipo di segnaletica orizzontale da realizzare deve essere conforme a quanto stabilito dal nuovo Codice della Strada d.lgs. n. 285 del 30/04/1992, dal Regolamento d'esecuzione e d'attuazione del nuovo codice della strada d.P.R. n. 495 del 16/12/1992, dal d.P.R. 16 settembre 1996 n. 610 e dai disegni esecutivi progettuali eventualmente allegati al presente Capitolato Speciale.

Per le specifiche relative alla tipologia di segnaletica orizzontale da porre in opera e alla sua ubicazione, si rimanda all'elaborato progettuale di dettaglio allegato al capitolato.

Caratteristiche dei materiali

I materiali da utilizzare per la segnaletica orizzontale sono classificati nel seguente modo:

A) Vernici

Possono essere di due tipi:

- 1) idropitture con microsfere di vetro (UNI EN 1424) postspruzzate:
- la vernice deve essere costituita da una miscela di resina e plastificanti, pigmenti e materiali riempitivi, il tutto contenuto in una sospensione a base d'acqua.
- 2) pitture a freddo con microsfere di vetro premiscelate e postspruzzate:

la vernice deve essere costituita da una miscela di resine e plastificanti, da pigmenti e materiali riempitivi, da microsfere di vetro conforme alla norma UNI EN 1423, il tutto disperso in diluenti o solventi idonei.

B) Termoplastico:

il materiale termoplastico deve essere costituito da una miscela di resine idrocarburiche sintetiche plastificate con olio minerale, da pigmenti ed aggregati, da microsfere di vetro, premiscelate e postspruzzate, da applicare a spruzzo e/o per estrusione a caldo.

C) Laminati elastoplastici:

- C.1 per applicazioni provvisorie;
- C.2 per applicazioni poco sollecitate;
- C.3 per applicazioni altamente sollecitate.

Prestazioni

Vengono di seguito definiti i requisiti, in base a quanto previsto dalla normativa UNI EN 1436, ai quali tutti i prodotti impiegati nei servizi di segnaletica orizzontale, devono ottemperare per tutta la loro vita funzionale.

Valori minori a quelli indicati dalla scheda tecnica, che deve essere prodotta dall'appaltatore prima dell'inizio della posa in opera, sono considerati insufficienti per il mantenimento degli standard di sicurezza previsti e comportano l'immediata sostituzione del materiale.

È facoltà del Direttore dei lavori, al fine di verificare i parametri prestazionali del materiale da porre in opera, richiedere all'appaltatore e/o eseguire per proprio conto dei provini della segnaletica.

Tali provini sono costituiti da lamierini metallici, delle dimensioni di cm 30 x 100, sui quali sarà posto in opera il materiale destinato alla segnaletica orizzontale.

Saranno eseguiti rilievi della visibilità notturna (valori RL), di derapaggio (SRT) e del colore (fattore). La segnaletica orizzontale, a partire dalla posa in opera, deve essere efficiente, per tutto il periodo della sua vita funzionale, sia in termini di visibilità notturna, sia di antiscivolosità.

Gli standard prestazionali richiesti sono:

- colore:
- visibilità notturna (retroriflessione);
- resistenza al derapaggio;
- tempo d'essiccazione.

COLORE

Il colore delle vernici da utilizzare per la segnaletica orizzontale viene definito mediante le coordinate di cromaticità riferita al diagramma colorimetrico standard CIE (ISO/CIE 10526-1999).

I colori della segnaletica orizzontale devono rientrare, per tutta la durata della loro vita funzionale, all'interno dei valori indicati dalla normativa tecnica di cui sopra. La vernice dovrà essere omogenea, di consistenza liscia ed uniforme, non dovrà fare crosta né diventare gelatinosa od ispessirsi.

VISIBILITA' NOTTURNA

La visibilità notturna della segnaletica orizzontale è determinata dall'illuminazione artificiale della segnaletica stessa e viene definita dal valore del coefficiente di luminanza retroriflessa R_L.

Il valore minimo del coefficiente di luminanza retroriflessa R_L deve essere per i prodotti di segnaletica orizzontale di tipo A, B e C e per tutta la loro vita funzionale pari a:

Tipo di materiale		Coefficiente minimo di luminanza retroriflessa R _L * mcd * m ² * lux ⁻¹	Classe
Permanente			
A -B	Bianco	R _L >= 110	R3 ^{a)}
A - B	Giallo	R _L >= 110	R3 ^{a)}
С	Bianco	R _L >= 110	R3 ^{a)}
Temporaneo			
A - B - C	Giallo	R _L >= 110	R3 ^{a)}

RESISTENZA AL DERAPAGGIO (SRT)

La segnaletica orizzontale deve possedere tra le sue caratteristiche la resistenza allo slittamento, determinato dal contatto tra il pneumatico e il prodotto segnaletico in condizioni sfavorevoli.

Il valore minimo, rilevato secondo le metodologie standard, deve essere per i prodotti di segnaletica orizzontale di tipo A, B e C e per tutta la loro vita funzionale di:

Classe	Valore SRT minimo
S1	SRT > = 45

TEMPO D'ESSICCAZIONE

La vernice applicata sulla superficie autostradale (manto bituminoso, manto bituminoso drenante, manto in conglomerato cementizio), alla temperatura dell'aria compresa tra $+10^{\circ}$ C e $+40^{\circ}$ C ed umidità relativa non superiore al 70%, deve asciugarsi entro 15 minuti dall'applicazione. Nel caso di termoplastico deve solidificarsi entro 30 secondi per lo spruzzato ed entro $180 \div 240$ secondi per l'estruso.

Trascorso tale periodo di tempo la pittura non deve sporcare o scolorire sotto l'azione delle ruote gommate degli autoveicoli in transito.

Esecuzione

Le fasi di installazione, di disinstallazione e di rifacimento o manutenzione della segnaletica stradale, unitamente agli interventi eseguiti in emergenza, costituiscono attività lavorative comportanti un rischio derivante dall'interferenza con il traffico veicolare.

Per tale motivo tutte le operazioni dell'appaltatore dovranno essere eseguite nel pieno rispetto delle procedure e dei criteri minimi previsti dal Decreto ministeriale 22 gennaio 2019 e relativi allegati, con particolare attenzione a:

- Dotazioni delle squadre di intervento,
- Limitazioni operative legate a particolari condizioni ambientali
- Gestione operativa degli interventi
- Presegnalazione di inizio intervento
- Sbandieramento
- Regolamentazione del traffico con movieri
- Spostamento a piedi degli operatori
- Attraveramento a piedi delle carreggiate
- Presenza di veicoli operativi
- Entrata ed uscita dal cantiere
- Situazioni di emergenza
- Rimozione di ostacoli dalla carreggiata
- Segnalazione e delimitazione di cantieri fissi
- Segnalazione di interventi all'interno di gallerie

Segnaletica consigliata nel caso di intervento su strade aperte al traffico veicolare

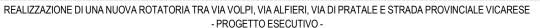


Figura II 391 Art. 31

SEGNI ORIZZONTALI IN RIFACIMENTO

Figura II 391c Art. 31

CORSIE A LARGHEZZA RIDOTTA

Le superfici interessate dalla stesa della segnaletica orizzontale, dovranno essere preventivamente pulite accuratamente, in modo tale da essere liberate da ogni impurità in grado di nuocere all'adesione dei materiali impiegati. È vietata l'eliminazione di tracce d'olio o grasso per mezzo di solventi.

L'applicazione dei materiali deve avvenire su superfici asciutte e deve essere effettuata con mezzi meccanici idonei cercando inoltre di ridurre al minimo l'ingombro della carreggiata e quindi le limitazioni da imporre alla circolazione.

La posa in opera dei materiali per segnaletica orizzontale deve essere eseguita secondo i tracciati, le figure e le scritte preesistenti o stabiliti dal Direttore dei lavori. Comunque l'Appaltatore è tenuto a propria cura e spese, a effettuare la rimozione e il rifacimento della segnaletica giudicata non regolarmente eseguita anche per quanto concerne la sua geometria (dimensioni, intervalli, allineamenti, ecc.).

I materiali devono avere un potere coprente uniforme e tale da non far trasparire, in nessun caso, il colore della sottostante pavimentazione.

L'appaltatore dovrà fornire, ove contemplato dal progetto e/o dalle indicazioni del Direttore dei lavori, nella giusta dimensione, quantità e posizione, l'inserto di catarifrangenti stradali inglobati nella segnaletica orizzontale (marker stradali o occhi di gatto) secondo i requisiti indicati dalla norma UNI EN 1463-1.

Le strisce in genere, così come tutta la segnaletica orizzontale, potranno essere di ripasso o di primo impianto; l'Impresa, ovunque sia necessario, effettuerà il preventivo tracciamento secondo le dimensioni che saranno precisate dalla Direzione lavori; tale tracciamento dovrà essere eseguito con attrezzature idonee e personale qualificato in modo da ottenere un risultato di stesa geometricamente a perfetta regola d'arte.

La cancellatura della segnaletica orizzontale, sia gratuita perché ad onere dell'Impresa che a pagamento, dovrà essere eseguita con sistemi approvati dalla Stazione appaltante.

Controlli

Le prove o controlli degli standard prestazionali dei materiali previsti ai sensi della norma UNI EN 1824 saranno effettuati al fine di verificare il mantenimento dei valori richiesti. Questi saranno eseguiti in contraddittorio con l'Appaltatore, e qualora questo non si presenti, l'avvenuta verifica sarà comunicata dal Direttore dei lavori, all'Appaltatore con espresso verbale che indichi i termini di riferimento del luogo in cui è stato effettuato il prelievo e/o la prova.

Tali verifiche saranno effettuate nella quantità che la Stazione Appaltante riterrà opportuna e come previsto dalle Appendici B, C e D alla norma UNI EN 1436 per i requisiti di colore, visibilità notturna e resistenza al derapaggio.

Le prove a cui saranno sottoposti i prodotti potranno essere eseguite in cantiere con l'ausilio di specifiche strumentazioni a insindacabile giudizio del Direttore dei lavori.

Art. 4.2 Segnaletica verticale - Generalità

Ai sensi dell'articolo 39 del Nuovo Codice della Strada d.lgs. 30 aprile 1992 n. 285 e s.m.i. i segnali verticali si dividono nelle seguenti categorie:

- **A)** segnali di pericolo: preavvisano l'esistenza di pericoli, ne indicano la natura e impongono ai conducenti di tenere un comportamento prudente;
- **B)** segnali di prescrizione: rendono noti obblighi, divieti e limitazioni cui gli utenti della strada devono uniformarsi; si suddividono in: a) segnali di precedenza; b) segnali di divieto; c) segnali di obbligo;
- **C)** segnali di indicazione: hanno la funzione di fornire agli utenti della strada informazioni necessarie o utili per la guida e per la individuazione di località, itinerari, servizi ed impianti; si suddividono in:
- a) segnali di preavviso; b) segnali di direzione; c) segnali di conferma; d) segnali di identificazione strade; e) segnali di itinerario; f) segnali di località e centro abitato; g) segnali di nome strada; h) segnali turistici e di territorio; i) altri segnali che danno informazioni necessarie per la guida dei veicoli; l) altri segnali che indicano installazioni o servizi.

Il Regolamento del Codice della strada (d.P.R. 16/12/1992, n. 495) stabilisce forme, dimensioni, colori e simboli dei segnali stradali verticali e le loro modalità di impiego e di apposizione.

Le parti principali di cui si compone un impianto di segnaletica verticale sono: il plinto, il sostegno (palo), il segnale o il gruppo di segnali, ed in casi di impianto segnaletico più complesso, le paline per controventature (pali che sostengono l'impianto contro la forza del vento) le staffe di ancoraggio e la bulloneria.

I plinti di fondazione dovranno essere realizzati in conglomerato cementizio, ed avere dimensioni tali, calcolate in funzione della natura dei materiali di cui è composto il sottofondo su cui impiantare il palo di sostegno, da assicurarne la perfetta stabilità e perpendicolarità rispetto al piano di calpestio.

Le paline: realizzate in acciaio zincato a caldo, a sezione circolare, con spessore e diametro idonei e lunghezza proporzionata alla quantità di segnali da sostenere ed all'altezza dal piano di calpestio prevista dal Codice della Strada, dovranno essere dotati di dispositivo antirotazione (scanalatura per tutta la lunghezza del palo, che evita la rotazione del segnale), di apposito foro all'estremità inferiore per l'inserimento dello spinotto necessario all'ancoraggio del palo al plinto e tappo di chiusura all'estremità superiore.

Per le specifiche relative alla tipologia di segnaletica verticale da porre in opera e alla sua ubicazione, si rimanda all'elaborato progettuale di dettaglio allegato al capitolato.

Caratteristiche dei materiali

I materiali di segnaletica stradale verticale ed accessori oggetto della realizzazione dovranno essere rigorosamente conformi a tutti i requisiti tecnici e normativi (comprese le caratteristiche prestazionali, tipologie, dimensioni, misure, scritte, simboli e colori) di cui al Regolamento (UE) n. 305/2011, alla norma armonizzata UNI EN 12899-1, al d.P.R. 16/12/1992, n. 495 recante il "Regolamento di esecuzione ed attuazione del nuovo Codice della Strada" e alla Norma UNI 11480.

Tutti i materiali retroriflettenti costituenti la faccia a vista dei segnali verticali permanenti devono essere certificati e marcati CE ai sensi del Regolamento (UE) n.305/20111 e della norma europea UNI EN 12899-1.

Tutti i materiali retroriflettenti devono inoltre essere valutati ai sensi della Norma UNI 11480, al fine di verificarne la conformità delle prestazioni visive in condizioni diurne e stabilirne la rispondenza al livello prestazionale più idoneo, fra i tre definiti dalla norma: inferiore, base o superiore.

Nel caso di pellicole di classe 1 con "livello prestazionale inferiore", corrispondenti a quelli già definiti a normale risposta luminosa, si dovrà avere un coefficiente di retroriflessione minimo iniziale R_A non inferiore ai valori riportati nel prospetto 3 della norma UNI 11480, e dovrà mantenere almeno il 50% dei suddetti valori per il periodo minimo di 7 anni di normale esposizione verticale all'esterno nelle condizioni medie ambientali d'uso. Fa eccezione la pellicola di colore arancio che deve mantenere i requisiti di cui sopra per almeno 3 anni. Nel caso di colori realizzati mediante stampa serigrafica, stampa digitale o applicazione di trasparenti protettivi autoadesivi ad intaglio, il coefficiente di retroriflessione non deve essere inferiore al 70% dei valori su menzionati. Tali materiali retroriflettenti possono essere usati solo limitatamente ai casi in cui ciò è consentito e ove sia prevista una vita utile del segnale stradale inferiore ai 10 anni, secondo quanto ribadito dalla Direttiva Ministeriale 4867/RU del 2013.

Le pellicole di classe 2 con "livello prestazionale base", corrispondenti a quelli già definiti ad elevata risposta luminosa, dovranno avere un coefficiente di retroriflessione minimo iniziale R_A non inferiore ai valori riportati nel prospetto 4 della norma UNI 11480, e devono mantenere almeno l'80% dei suddetti valori per il periodo minimo di 10 anni di normale esposizione verticale all'esterno nelle condizioni medie ambientali d'uso. Fa eccezione la pellicola di colore arancio che deve mantenere i requisiti di cui sopra per almeno 3 anni. Nel caso di colori realizzati mediante stampa serigrafica, stampa digitale o applicazione di trasparenti protettivi autoadesivi ad intaglio, il coefficiente di retroriflessione non deve essere inferiore al 70% dei valori su menzionati.

Le pellicole di classe 2 con "livello prestazionale superiore", corrispondenti a quelli già definiti ad altissima risposta luminosa, devono avere un coefficiente di retroriflessione minimo iniziale R_A non inferiore ai valori riportati nel prospetto 5 della norma UNI 11480, e devono mantenere almeno l'80% dei suddetti valori per il periodo minimo di 10 anni di normale esposizione verticale all'esterno nelle condizioni medie ambientali d'uso. Fa eccezione la pellicola di colore arancio che deve mantenere i requisiti di cui sopra per almeno 3 anni. Tali pellicole possono essere anche del tipo "fluoro-rifrangente", cioè con più elevato fattore di luminanza e conseguentemente più elevata visibilità diurna, caratteristica utile in particolare per la segnaletica verticale temporanea. In questo caso il coefficiente di retroriflessione minimo iniziale R_A non deve essere inferiore ai valori riportati nel prospetto 6 della norma UNI 11480. Nel caso di colori realizzati mediante stampa serigrafica, stampa digitale o applicazione di trasparenti protettivi autoadesivi ad intaglio, il coefficiente di retroriflessione non deve essere inferiore al 70% dei valori su menzionati.

L'impiego delle pellicole rifrangenti ad elevata efficienza (classe 2) é obbligatorio nei casi in cui é esplicitamente previsto dal progetto e dal presente capitolato, e per i segnali: "dare precedenza", "fermarsi e dare precedenza", "dare precedenza a destra", "divieto di sorpasso", nonché per i segnali permanenti di preavviso e di direzione. L'impiego di pellicole con tecnologia a microprismi è consentito qualora siano rispettate le caratteristiche prestazionali previste dalla norma UNI 11122.

I pannelli dei segnali ed i sostegni che caratterizzano le prestazioni strutturali e la costruzione dei segnali verticali permanenti devono soddisfare i requisiti di cui alla norma UNI 11480, in applicazione alla norma armonizzata UNI EN 12899-1.

I segnali stradali permanenti possono essere costruiti in acciaio, alluminio, plastica o negli altri materiali previsti dalla norma UNI EN 12899-1 purché conformi alle **"Prestazioni"** strutturali di seguito indicate.

La faccia del pannello, atta all'applicazione del messaggio, deve essere completamente liscia senza alcuna scanalatura o protuberanza ed esente da sbavature.

Supporti in lamiera

I segnali saranno costituiti in lamiera di ferro di prima scelta con spessore non inferiore a 10/10 di millimetro o in lamiera di alluminio semicrudo puro al 99% dello spessore non inferiore a 25/10 di millimetro (per dischi, triangoli, frecce e targhe di superficie compresa entro i 5 metri quadrati) e dello spessore di 30/10 di millimetro per targhe superiori ai 5 metri quadrati.

- Rinforzo perimetrale

Ogni segnale dovrà essere rinforzato lungo il suo perimetro da una bordatura di irrigidimento realizzata a scatola dalle dimensioni non inferiori a centimetri 1,5;

- Traverse di rinforzo e di collegamento

Qualora le dimensioni dei segnali superino la superficie di metri quadrati 1,50, i cartelli dovranno essere ulteriormente rinforzati con traverse di irrigidimento piegate ad U dello sviluppo di centimetri 15, saldate al cartello nella misura e della larghezza necessaria.

- Traverse intelaiature

Dove necessario, sono prescritte per i cartelli di grandi dimensioni traverse in ferro zincate ad U di collegamento tra i vari sostegni.

Tali traverse dovranno essere complete di staffe ed attacchi a morsetto per il collegamento, con bulloni in acciaio zincato nella quantità necessaria, le dimensioni della sezione della traversa saranno di millimetri 50x23, spessore di millimetri 5, con la lunghezza prescritta per i singoli cartelli.

La zincatura delle traverse, delle staffe e degli attacchi dovrà essere conforme alle prescrizioni delle norme UNI EN 10244-1 e UNI EN 10244-2.

Qualora i segnali siano costituiti da due o più pannelli, congiunti, questi devono essere perfettamente accostati mediante angolari in alluminio, spessore millimetri 3, opportunamente forati e muniti di bulloncini in acciaio zincato sufficienti ad ottenere un perfetto assestamento dei lembi dei pannelli.

Per evitare forature, tutti i segnali dovranno essere muniti di attacchi standard (per l'adattamento ai sostegni in ferro tubolare diam. mm. 48, 60, 90), ottenuto mediante fissaggio elettrico sul retro con profilo a "C", oppure ricavato (nel caso di cartelli rinforzati e composti di pannelli multipli) direttamente sulle traverse di rinforzo ad U.

Tali attacchi dovranno essere completati da opportune staffe con dispositivi antirotazione in acciaio zincato corredate di relativa bulloneria, anch'essa zincata.

SOSTEGNI

I sostegni per i segnali verticali, portali esclusi, saranno in ferro tubolare antirotazione (art. 82 d.P.R. n. 495/92) diametro mm. 60, 90 chiusi alla sommità, dovranno essere zincati a caldo conformemente alle norme UNI e ASTM.

Detti sostegni, comprese le staffe di ancoraggio del palo di basamento, non dovranno essere sottodimensionati, nemmeno in termini di peso (Kg/m).

I sostegni devono avere, nei casi di sezione circolare, un dispositivo inamovibile antirotazione del segnale rispetto al sostegno e del sostegno rispetto al terreno. La sezione del sostegno deve garantire la stabilità del segnale in condizione di sollecitazioni derivanti da fattori ambientali.

I sostegni, al pari dei supporti dei segnali stradali, devono essere adeguatamente protetti contro la corrosione. Previo parere della Direzione dei Lavori, il diametro inferiore sarà utilizzato per i cartelli triangolari, circolari e quadrati di superficie inferiore a metri quadrati 0,8, mentre il diametro maggiore sarà utilizzato per i cartelli a maggiore superficie. Il dimensionamento dei sostegni dei grandi cartelli e la loro eventuale controventatura dovrà essere approvato dalla Direzione dei Lavori previo studio e giustificazione tecnica.

Prestazioni

Tutti i segnali devono essere rispondenti ai tipi, dimensioni e misure prescritte dal Regolamento di esecuzione e di attuazione del Nuovo Codice della Strada, alle Norme Tecniche sulle costruzioni ed in ogni caso alle norme in vigore al momento dell'esecuzione dei lavori.

Tutti i segnali circolari, triangolari, targhe, frecce, nonché i sostegni ed i relativi basamenti di fondazione dovranno essere costruiti e realizzati sotto la completa responsabilità della Ditta aggiudicataria, in modo tale da resistere alla forza esercitata dal vento alla velocita di almeno 150 Km/h.

I carichi statici e dinamici per la valutazione delle prestazioni meccaniche e strutturali, devono essere conformi a quanto definito dal punto 5.1 della norma UNI EN 12899-1, mediante l'utilizzo dei coefficienti specificati per i rispettivi materiali.

I valori minimi per le prestazioni strutturali devono essere conformi, per tutti i materiali utilizzati, a quelli previsti dalla UNI 11480 al punto 5.3, con le seguenti classi:

- Spinta del vento: Classe WL6 o WL7
- Carico dinamico da neve: Classe DSL1 (o DSL2, DSL3, DSL4)
- Carichi concentrati: Classe PL1
- Deformazioni Temporanee Flessione: Classe TDB5
- Deformazioni Temporanee Torsione: Non richiesta

Sono accettate classi migliorative per i valori minimi prestazionali elencati.

Le dimensioni dei segnali verticali di forma standard devono essere conformi a quanto previsto dall'art. 80, comma 1 del d.P.R. 16 dicembre 1992, n. 495; le dimensioni dei segnali verticali non standard devono essere conformi a quanto previsto dall'art. 80, comma 7 dello stesso decreto.

Le tolleranze ammissibili, rispetto alle misure nominali sono:

- per la faccia a vista del segnale: +1/-12 mm, in conformità al punto 4.1. della UNI 11480;
- per il pannello: -1/+7 mm, in conformità al punto 5.6 della UNI 11480.

Il raggio di curvatura non deve essere inferiore a 10 mm. Il bordo del pannello deve essere conforme al punto 5.9 della norma UNI 11480. Per motivi antinfortunistici il bordo del supporto non deve presentare pericoli di taglio.

Il retro ed il bordo dei pannelli (ad eccezione di quelli in legno) devono essere realizzati con un colore neutro e opaco.

I segnali non devono presentare perforazione della faccia a vista. Qualora realizzati in acciaio, alluminio o legno, devono avere una resistenza alla corrosione conforme al punto 5.10 della norma UNI 11480, con classe di resistenza SP1

I fissaggi dei segnali e i sostegni devono essere conformi rispettivamente al par. 6 e al par. 7 della UNI 11480.

In particolare, i segnali - affinché siano conformi alle prescrizioni della UNI EN 12899-1, devono essere forniti provvisti di collari di aggancio per il sostegno aventi le stesse caratteristiche tecnico-costruttive e di disegno ovvero corrispondenti a quelli utilizzati nelle prove inziali di tipo.

A tergo di ogni segnale dovranno essere indicati, a cura e spese del fornitore, una serie di iscrizioni che, globalmente, in conformità di quanto disposto al punto 7 dell'art. 77 del d.P.R. n. 495/92, non dovranno occupare una superficie maggiore di cmq. 200 ed indicare chiaramente:

- l'ente o l'amministrazione proprietari della strada;
- il marchio della ditta che ha fabbricato il segnale;
- il marchio della ditta che ha fornito o installato il segnale (non obbligatorio ma opportuno);
- l'anno di fabbricazione
- gli estremi dell'ordinanza di apposizione

Marcatura CE

La marcatura CE deve essere apposta in modo visibile, leggibile e indelebile sul prodotto o su un'etichetta ad esso applicata. Se ciò fosse impossibile o ingiustificato a causa della natura del prodotto (e solo in questo caso), essa dovrà essere apposta sull'imballaggio o sui documenti di accompagnamento.

La marcatura CE dei segnali verticali permanenti deve avvenire secondo una delle modalità indicate al punto 5.5 della UNI 11480.

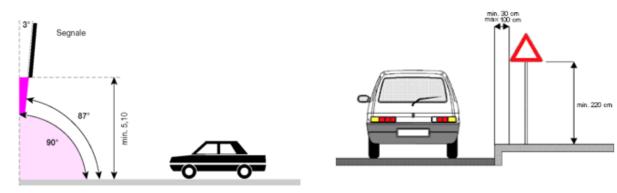
E' possibile utilizzare dei sostegni circolari, a sezione quadrata o rettangolare, che possiedano la marcatura CE ai sensi del Regolamento (UE) 305/2011 sulla base della norma UNI EN 12899-1.

Eventuali segnali temporanei non sono soggetti alla marcatura CE, ma l'utilizzo di pellicole retroriflettenti marcate CE è fortemente raccomandato.

Esecuzione

Le fasi di installazione, di disinstallazione e di rifacimento o manutenzione della segnaletica stradale, unitamente agli interventi eseguiti in emergenza, costituiscono attività lavorative comportanti un rischio derivante dall'interferenza con il traffico veicolare.

Per tale motivo tutte le operazioni dell'appaltatore dovranno essere eseguite nel pieno rispetto delle procedure e dei criteri minimi previsti dal Decreto ministeriale 22 gennaio 2019 e relativi allegati, con particolare attenzione a:


- Dotazioni delle squadre di intervento,
- Limitazioni operative legate a particolari condizioni ambientali
- Gestione operativa degli interventi
- Presegnalazione di inizio intervento
- Sbandieramento
- Regolamentazione del traffico con movieri
- Spostamento a piedi degli operatori
- Attraveramento a piedi delle carreggiate
- Presenza di veicoli operativi
- Entrata ed uscita dal cantiere
- Situazioni di emergenza
- Rimozione di ostacoli dalla carreggiata
- Segnalazione e delimitazione di cantieri fissi
- Segnalazione di interventi all'interno di gallerie

I segnali verticali sono installati, di norma, sul lato destro della strada. Possono essere ripetuti sul lato sinistro ovvero installati su isole spartitraffico o al di sopra della carreggiata, quando é necessario per motivi di sicurezza ovvero previsto dalle norme specifiche.

I segnali da ubicare sul lato della sede stradale (segnali laterali) devono avere il bordo verticale interno a distanza non inferiore a 0,30 m e non superiore a 1,00 m dal ciglio del marciapiede o dal bordo esterno della banchina (v. figura). Distanze inferiori, purché il segnale non sporga sulla carreggiata, sono ammesse in caso di limitazione di spazio. I sostegni verticali dei segnali devono essere collocati a distanza non inferiore a 0,50 m dal ciglio del marciapiede o dal bordo esterno della banchina; in presenza di barriere i sostegni possono essere ubicati all'esterno e a ridosso delle barriere medesime, purché non si determinino sporgenze rispetto alle stesse. Per altezza dei segnali stradali dal suolo si intende l'altezza del bordo inferiore del cartello o del pannello integrativo più basso dal piano orizzontale tangente al punto più alto della carreggiata in quella sezione. Su tratte omogenee di strada i segnali devono essere posti, per quanto possibile, ad altezza uniforme. L'altezza minima dei segnali laterali é di 0,60 m e la massima é di 2,20 m, ad eccezione di quelli mobili. Lungo le strade urbane, per particolari condizioni ambientali, i segnali possono essere posti ad altezza superiore e comunque non oltre 4,50 m. Tutti i segnali insistenti su marciapiedi o comunque su percorsi pedonali devono avere un'altezza minima di 2,20 m, ad eccezione delle lanterne semaforiche. I segnali collocati al di sopra della carreggiata devono avere un'altezza minima di 5,10 m, salvo nei casi di applicazione su manufatti di altezza inferiore ed avere un'altezza ed un'inclinazione rispetto al piano perpendicolare alla superficie stradale in funzione dell'andamento altimetrico della strada. Per i segnali posti ad altezza di 5,10 m, detta inclinazione sulle strade pianeggianti è di 3° circa verso il lato da cui provengono i veicoli (v. figura).

Installazione segnaletica verticale

INSTALLAZIONE SOPRA LA CARREGGIATA

INSTALLAZIONE A LATO CARREGGIATA

I segnali di prescrizione devono essere installati in corrispondenza o il più vicino possibile al punto in cui inizia la prescrizione. I segnali che indicano la fine del divieto o dell'obbligo devono essere installati in corrispondenza o il più vicino possibile al punto in cui cessa il divieto o l'obbligo stesso. In funzione delle caratteristiche del materiale impiegato, la disposizione del segnale deve essere tale da non dare luogo ad abbagliamento o a riduzione di leggibilità del segnale stesso.

Controlli

Le prove o controlli degli standard prestazionali dei materiali previsti saranno effettuati al fine di verificare il mantenimento dei valori richiesti. Questi saranno eseguiti in contraddittorio con l'Appaltatore, e qualora questo non si presenti, l'avvenuta verifica sarà comunicata dal Direttore dei lavori all'Appaltatore con espresso verbale che indichi i termini di riferimento del luogo in cui è stato effettuata la verifica e/o la prova.

Le prove a cui saranno sottoposti i prodotti potranno essere eseguite in cantiere con l'ausilio di specifiche strumentazioni a insindacabile giudizio del Direttore dei lavori.

I controlli tenderanno alla verifica dei sequenti dati e parametri essenziali per la segnaletica permanente:

- Certificazioni del fornitore e del produttore;
- Categoria del Segnale stradale tra quelle individuate dal Nuovo Codice della Strada;
- Materiale del supporto;
- Spessore del materiale [mm];
- Forma del segnale così come previsto dal titolo II del Nuovo Codice della Strada;
- Formato del segnale così come previsto dal titolo II del Nuovo Codice della Strada;
- Spinta del vento così come previsto dalla norma UNI EN 12899-1 prospetto 8;
- Carico dinamico della neve: parametro strutturale del segnale così come previsto dalla norma UNI EN 12899-1 prospetto 9;
- Carichi concentrati: parametro strutturale del pannello integrativo così come previsto dalla norma UNI EN 12899-1 prospetto 10;
- Deformazione temporanea massima (Flessione): parametro strutturale del segnale così come previsto dalla norma UNI EN 12899-1 prospetto 11;
- Deformazione temporanea massima (Torsione): parametro strutturale del segnale così come previsto dalla norma UNI EN 12899-1 prospetto 12;
- Classe rifrangenza pellicole dettata dalla normativa vigente;
- Iscrizione sul retro del supporto così come previsto dalla norma UNI EN 12899-1.

